MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzinfi Structured version   Visualization version   GIF version

Theorem uzinfi 12329
Description: Extract the lower bound of an upper set of integers as its infimum. (Contributed by NM, 7-Oct-2005.) (Revised by AV, 4-Sep-2020.)
Hypothesis
Ref Expression
uzinfi.1 𝑀 ∈ ℤ
Assertion
Ref Expression
uzinfi inf((ℤ𝑀), ℝ, < ) = 𝑀

Proof of Theorem uzinfi
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 uzinfi.1 . 2 𝑀 ∈ ℤ
2 ltso 10721 . . . 4 < Or ℝ
32a1i 11 . . 3 (𝑀 ∈ ℤ → < Or ℝ)
4 zre 11986 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
5 uzid 12259 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
6 eluz2 12250 . . . . 5 (𝑘 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘))
74adantr 483 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℝ)
8 zre 11986 . . . . . . . . 9 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
98adantl 484 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
107, 9lenltd 10786 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀𝑘 ↔ ¬ 𝑘 < 𝑀))
1110biimp3a 1465 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) → ¬ 𝑘 < 𝑀)
1211a1d 25 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) → (𝑀 ∈ ℤ → ¬ 𝑘 < 𝑀))
136, 12sylbi 219 . . . 4 (𝑘 ∈ (ℤ𝑀) → (𝑀 ∈ ℤ → ¬ 𝑘 < 𝑀))
1413impcom 410 . . 3 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ (ℤ𝑀)) → ¬ 𝑘 < 𝑀)
153, 4, 5, 14infmin 8958 . 2 (𝑀 ∈ ℤ → inf((ℤ𝑀), ℝ, < ) = 𝑀)
161, 15ax-mp 5 1 inf((ℤ𝑀), ℝ, < ) = 𝑀
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5066   Or wor 5473  cfv 6355  infcinf 8905  cr 10536   < clt 10675  cle 10676  cz 11982  cuz 12244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-pre-lttri 10611  ax-pre-lttrn 10612
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-neg 10873  df-z 11983  df-uz 12245
This theorem is referenced by:  nninf  12330  nn0inf  12331
  Copyright terms: Public domain W3C validator