MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonffth Structured version   Visualization version   GIF version

Theorem yonffth 17529
Description: The Yoneda Lemma. The Yoneda embedding, the curried Hom functor, is full and faithful, and hence is a representation of the category 𝐶 as a full subcategory of the category 𝑄 of presheaves on 𝐶. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yonffth.y 𝑌 = (Yon‘𝐶)
yonffth.o 𝑂 = (oppCat‘𝐶)
yonffth.s 𝑆 = (SetCat‘𝑈)
yonffth.q 𝑄 = (𝑂 FuncCat 𝑆)
yonffth.c (𝜑𝐶 ∈ Cat)
yonffth.u (𝜑𝑈𝑉)
yonffth.h (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
Assertion
Ref Expression
yonffth (𝜑𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)))

Proof of Theorem yonffth
Dummy variables 𝑓 𝑎 𝑔 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 yonffth.y . 2 𝑌 = (Yon‘𝐶)
2 eqid 2820 . 2 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2820 . 2 (Id‘𝐶) = (Id‘𝐶)
4 yonffth.o . 2 𝑂 = (oppCat‘𝐶)
5 yonffth.s . 2 𝑆 = (SetCat‘𝑈)
6 eqid 2820 . 2 (SetCat‘(ran (Homf𝑄) ∪ 𝑈)) = (SetCat‘(ran (Homf𝑄) ∪ 𝑈))
7 yonffth.q . 2 𝑄 = (𝑂 FuncCat 𝑆)
8 eqid 2820 . 2 (HomF𝑄) = (HomF𝑄)
9 eqid 2820 . 2 ((𝑄 ×c 𝑂) FuncCat (SetCat‘(ran (Homf𝑄) ∪ 𝑈))) = ((𝑄 ×c 𝑂) FuncCat (SetCat‘(ran (Homf𝑄) ∪ 𝑈)))
10 eqid 2820 . 2 (𝑂 evalF 𝑆) = (𝑂 evalF 𝑆)
11 eqid 2820 . 2 ((HomF𝑄) ∘func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂))) = ((HomF𝑄) ∘func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
12 yonffth.c . 2 (𝜑𝐶 ∈ Cat)
13 fvex 6676 . . . 4 (Homf𝑄) ∈ V
1413rnex 7610 . . 3 ran (Homf𝑄) ∈ V
15 yonffth.u . . 3 (𝜑𝑈𝑉)
16 unexg 7465 . . 3 ((ran (Homf𝑄) ∈ V ∧ 𝑈𝑉) → (ran (Homf𝑄) ∪ 𝑈) ∈ V)
1714, 15, 16sylancr 589 . 2 (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ∈ V)
18 yonffth.h . 2 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
19 ssidd 3983 . 2 (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ (ran (Homf𝑄) ∪ 𝑈))
20 eqid 2820 . 2 (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ (Base‘𝐶) ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘((Id‘𝐶)‘𝑥)))) = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ (Base‘𝐶) ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘((Id‘𝐶)‘𝑥))))
21 eqid 2820 . 2 (Inv‘((𝑄 ×c 𝑂) FuncCat (SetCat‘(ran (Homf𝑄) ∪ 𝑈)))) = (Inv‘((𝑄 ×c 𝑂) FuncCat (SetCat‘(ran (Homf𝑄) ∪ 𝑈))))
22 eqid 2820 . 2 (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ (Base‘𝐶) ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢))))) = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ (Base‘𝐶) ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
231, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 17, 18, 19, 20, 21, 22yonffthlem 17527 1 (𝜑𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2113  Vcvv 3491  cun 3927  cin 3928  wss 3929  cop 4566  cmpt 5139  ran crn 5549  cfv 6348  (class class class)co 7149  cmpo 7151  1st c1st 7680  2nd c2nd 7681  tpos ctpos 7884  Basecbs 16478  Hom chom 16571  Catccat 16930  Idccid 16931  Homf chomf 16932  oppCatcoppc 16976  Invcinv 17010   Func cfunc 17119  func ccofu 17121   Full cful 17167   Faith cfth 17168   Nat cnat 17206   FuncCat cfuc 17207  SetCatcsetc 17330   ×c cxpc 17413   1stF c1stf 17414   2ndF c2ndf 17415   ⟨,⟩F cprf 17416   evalF cevlf 17454  HomFchof 17493  Yoncyon 17494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-tpos 7885  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-oadd 8099  df-er 8282  df-map 8401  df-pm 8402  df-ixp 8455  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11632  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12890  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-hom 16584  df-cco 16585  df-cat 16934  df-cid 16935  df-homf 16936  df-comf 16937  df-oppc 16977  df-sect 17012  df-inv 17013  df-iso 17014  df-ssc 17075  df-resc 17076  df-subc 17077  df-func 17123  df-cofu 17125  df-full 17169  df-fth 17170  df-nat 17208  df-fuc 17209  df-setc 17331  df-xpc 17417  df-1stf 17418  df-2ndf 17419  df-prf 17420  df-evlf 17458  df-curf 17459  df-hof 17495  df-yon 17496
This theorem is referenced by:  yoniso  17530
  Copyright terms: Public domain W3C validator