Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > ax6 | GIF version |
Description: Axiom of Quantified Negation. Axiom C5-2 of [Monk2] p. 113. (Contributed by Mario Carneiro, 10-Oct-2014.) |
Ref | Expression |
---|---|
ax6.1 | ⊢ R:∗ |
Ref | Expression |
---|---|
ax6 | ⊢ ⊤⊧[(¬ (∀λx:α R)) ⇒ (∀λx:α (¬ (∀λx:α R)))] |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wnot 138 | . . 3 ⊢ ¬ :(∗ → ∗) | |
2 | wal 134 | . . . 4 ⊢ ∀:((α → ∗) → ∗) | |
3 | ax6.1 | . . . . 5 ⊢ R:∗ | |
4 | 3 | wl 66 | . . . 4 ⊢ λx:α R:(α → ∗) |
5 | 2, 4 | wc 50 | . . 3 ⊢ (∀λx:α R):∗ |
6 | 1, 5 | wc 50 | . 2 ⊢ (¬ (∀λx:α R)):∗ |
7 | wv 64 | . . 3 ⊢ y:α:α | |
8 | 1, 7 | ax-17 105 | . . 3 ⊢ ⊤⊧[(λx:α ¬ y:α) = ¬ ] |
9 | 2, 7 | ax-17 105 | . . . 4 ⊢ ⊤⊧[(λx:α ∀y:α) = ∀] |
10 | 3, 7 | ax-hbl1 103 | . . . 4 ⊢ ⊤⊧[(λx:α λx:α Ry:α) = λx:α R] |
11 | 2, 4, 7, 9, 10 | hbc 110 | . . 3 ⊢ ⊤⊧[(λx:α (∀λx:α R)y:α) = (∀λx:α R)] |
12 | 1, 5, 7, 8, 11 | hbc 110 | . 2 ⊢ ⊤⊧[(λx:α (¬ (∀λx:α R))y:α) = (¬ (∀λx:α R))] |
13 | 6, 12 | isfree 188 | 1 ⊢ ⊤⊧[(¬ (∀λx:α R)) ⇒ (∀λx:α (¬ (∀λx:α R)))] |
Colors of variables: type var term |
Syntax hints: tv 1 → ht 2 ∗hb 3 kc 5 λkl 6 ⊤kt 8 [kbr 9 ⊧wffMMJ2 11 wffMMJ2t 12 ¬ tne 120 ⇒ tim 121 ∀tal 122 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 ax-eta 177 |
This theorem depends on definitions: df-ov 73 df-al 126 df-fal 127 df-an 128 df-im 129 df-not 130 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |