ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0el GIF version

Theorem 0el 3473
Description: Membership of the empty set in another class. (Contributed by NM, 29-Jun-2004.)
Assertion
Ref Expression
0el (∅ ∈ 𝐴 ↔ ∃𝑥𝐴𝑦 ¬ 𝑦𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem 0el
StepHypRef Expression
1 risset 2525 . 2 (∅ ∈ 𝐴 ↔ ∃𝑥𝐴 𝑥 = ∅)
2 eq0 3469 . . 3 (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦𝑥)
32rexbii 2504 . 2 (∃𝑥𝐴 𝑥 = ∅ ↔ ∃𝑥𝐴𝑦 ¬ 𝑦𝑥)
41, 3bitri 184 1 (∅ ∈ 𝐴 ↔ ∃𝑥𝐴𝑦 ¬ 𝑦𝑥)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  wal 1362   = wceq 1364  wcel 2167  wrex 2476  c0 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-dif 3159  df-nul 3451
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator