Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0el | GIF version |
Description: Membership of the empty set in another class. (Contributed by NM, 29-Jun-2004.) |
Ref | Expression |
---|---|
0el | ⊢ (∅ ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ¬ 𝑦 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risset 2498 | . 2 ⊢ (∅ ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = ∅) | |
2 | eq0 3433 | . . 3 ⊢ (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ 𝑥) | |
3 | 2 | rexbii 2477 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝑥 = ∅ ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ¬ 𝑦 ∈ 𝑥) |
4 | 1, 3 | bitri 183 | 1 ⊢ (∅ ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ¬ 𝑦 ∈ 𝑥) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 104 ∀wal 1346 = wceq 1348 ∈ wcel 2141 ∃wrex 2449 ∅c0 3414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-dif 3123 df-nul 3415 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |