ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0el GIF version

Theorem 0el 3332
Description: Membership of the empty set in another class. (Contributed by NM, 29-Jun-2004.)
Assertion
Ref Expression
0el (∅ ∈ 𝐴 ↔ ∃𝑥𝐴𝑦 ¬ 𝑦𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem 0el
StepHypRef Expression
1 risset 2422 . 2 (∅ ∈ 𝐴 ↔ ∃𝑥𝐴 𝑥 = ∅)
2 eq0 3328 . . 3 (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦𝑥)
32rexbii 2401 . 2 (∃𝑥𝐴 𝑥 = ∅ ↔ ∃𝑥𝐴𝑦 ¬ 𝑦𝑥)
41, 3bitri 183 1 (∅ ∈ 𝐴 ↔ ∃𝑥𝐴𝑦 ¬ 𝑦𝑥)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 104  wal 1297   = wceq 1299  wcel 1448  wrex 2376  c0 3310
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-rex 2381  df-v 2643  df-dif 3023  df-nul 3311
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator