ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0el GIF version

Theorem 0el 3416
Description: Membership of the empty set in another class. (Contributed by NM, 29-Jun-2004.)
Assertion
Ref Expression
0el (∅ ∈ 𝐴 ↔ ∃𝑥𝐴𝑦 ¬ 𝑦𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem 0el
StepHypRef Expression
1 risset 2485 . 2 (∅ ∈ 𝐴 ↔ ∃𝑥𝐴 𝑥 = ∅)
2 eq0 3412 . . 3 (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦𝑥)
32rexbii 2464 . 2 (∃𝑥𝐴 𝑥 = ∅ ↔ ∃𝑥𝐴𝑦 ¬ 𝑦𝑥)
41, 3bitri 183 1 (∅ ∈ 𝐴 ↔ ∃𝑥𝐴𝑦 ¬ 𝑦𝑥)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 104  wal 1333   = wceq 1335  wcel 2128  wrex 2436  c0 3394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-rex 2441  df-v 2714  df-dif 3104  df-nul 3395
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator