![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0el | GIF version |
Description: Membership of the empty set in another class. (Contributed by NM, 29-Jun-2004.) |
Ref | Expression |
---|---|
0el | ⊢ (∅ ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ¬ 𝑦 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risset 2422 | . 2 ⊢ (∅ ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = ∅) | |
2 | eq0 3328 | . . 3 ⊢ (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ 𝑥) | |
3 | 2 | rexbii 2401 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝑥 = ∅ ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ¬ 𝑦 ∈ 𝑥) |
4 | 1, 3 | bitri 183 | 1 ⊢ (∅ ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ¬ 𝑦 ∈ 𝑥) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 104 ∀wal 1297 = wceq 1299 ∈ wcel 1448 ∃wrex 2376 ∅c0 3310 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-rex 2381 df-v 2643 df-dif 3023 df-nul 3311 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |