Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abvor0dc | Unicode version |
Description: The class builder of a decidable proposition not containing the abstraction variable is either the universal class or the empty set. (Contributed by Jim Kingdon, 1-Aug-2018.) |
Ref | Expression |
---|---|
abvor0dc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dc 821 | . 2 DECID | |
2 | id 19 | . . . . 5 | |
3 | vex 2715 | . . . . . 6 | |
4 | 3 | a1i 9 | . . . . 5 |
5 | 2, 4 | 2thd 174 | . . . 4 |
6 | 5 | abbi1dv 2277 | . . 3 |
7 | id 19 | . . . . 5 | |
8 | noel 3398 | . . . . . 6 | |
9 | 8 | a1i 9 | . . . . 5 |
10 | 7, 9 | 2falsed 692 | . . . 4 |
11 | 10 | abbi1dv 2277 | . . 3 |
12 | 6, 11 | orim12i 749 | . 2 |
13 | 1, 12 | sylbi 120 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wo 698 DECID wdc 820 wceq 1335 wcel 2128 cab 2143 cvv 2712 c0 3394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-dif 3104 df-nul 3395 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |