| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abvor0dc | Unicode version | ||
| Description: The class builder of a decidable proposition not containing the abstraction variable is either the universal class or the empty set. (Contributed by Jim Kingdon, 1-Aug-2018.) |
| Ref | Expression |
|---|---|
| abvor0dc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 837 |
. 2
| |
| 2 | id 19 |
. . . . 5
| |
| 3 | vex 2779 |
. . . . . 6
| |
| 4 | 3 | a1i 9 |
. . . . 5
|
| 5 | 2, 4 | 2thd 175 |
. . . 4
|
| 6 | 5 | abbi1dv 2327 |
. . 3
|
| 7 | id 19 |
. . . . 5
| |
| 8 | noel 3472 |
. . . . . 6
| |
| 9 | 8 | a1i 9 |
. . . . 5
|
| 10 | 7, 9 | 2falsed 704 |
. . . 4
|
| 11 | 10 | abbi1dv 2327 |
. . 3
|
| 12 | 6, 11 | orim12i 761 |
. 2
|
| 13 | 1, 12 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-dif 3176 df-nul 3469 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |