| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abvor0dc | Unicode version | ||
| Description: The class builder of a decidable proposition not containing the abstraction variable is either the universal class or the empty set. (Contributed by Jim Kingdon, 1-Aug-2018.) |
| Ref | Expression |
|---|---|
| abvor0dc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 837 |
. 2
| |
| 2 | id 19 |
. . . . 5
| |
| 3 | vex 2775 |
. . . . . 6
| |
| 4 | 3 | a1i 9 |
. . . . 5
|
| 5 | 2, 4 | 2thd 175 |
. . . 4
|
| 6 | 5 | abbi1dv 2325 |
. . 3
|
| 7 | id 19 |
. . . . 5
| |
| 8 | noel 3464 |
. . . . . 6
| |
| 9 | 8 | a1i 9 |
. . . . 5
|
| 10 | 7, 9 | 2falsed 704 |
. . . 4
|
| 11 | 10 | abbi1dv 2325 |
. . 3
|
| 12 | 6, 11 | orim12i 761 |
. 2
|
| 13 | 1, 12 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 df-nul 3461 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |