ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abvor0dc Unicode version

Theorem abvor0dc 3432
Description: The class builder of a decidable proposition not containing the abstraction variable is either the universal class or the empty set. (Contributed by Jim Kingdon, 1-Aug-2018.)
Assertion
Ref Expression
abvor0dc  |-  (DECID  ph  ->  ( { x  |  ph }  =  _V  \/  { x  |  ph }  =  (/) ) )
Distinct variable group:    ph, x

Proof of Theorem abvor0dc
StepHypRef Expression
1 df-dc 825 . 2  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
2 id 19 . . . . 5  |-  ( ph  ->  ph )
3 vex 2729 . . . . . 6  |-  x  e. 
_V
43a1i 9 . . . . 5  |-  ( ph  ->  x  e.  _V )
52, 42thd 174 . . . 4  |-  ( ph  ->  ( ph  <->  x  e.  _V ) )
65abbi1dv 2286 . . 3  |-  ( ph  ->  { x  |  ph }  =  _V )
7 id 19 . . . . 5  |-  ( -. 
ph  ->  -.  ph )
8 noel 3413 . . . . . 6  |-  -.  x  e.  (/)
98a1i 9 . . . . 5  |-  ( -. 
ph  ->  -.  x  e.  (/) )
107, 92falsed 692 . . . 4  |-  ( -. 
ph  ->  ( ph  <->  x  e.  (/) ) )
1110abbi1dv 2286 . . 3  |-  ( -. 
ph  ->  { x  | 
ph }  =  (/) )
126, 11orim12i 749 . 2  |-  ( (
ph  \/  -.  ph )  ->  ( { x  | 
ph }  =  _V  \/  { x  |  ph }  =  (/) ) )
131, 12sylbi 120 1  |-  (DECID  ph  ->  ( { x  |  ph }  =  _V  \/  { x  |  ph }  =  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 698  DECID wdc 824    = wceq 1343    e. wcel 2136   {cab 2151   _Vcvv 2726   (/)c0 3409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-dc 825  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-nul 3410
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator