Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abvor0dc | Unicode version |
Description: The class builder of a decidable proposition not containing the abstraction variable is either the universal class or the empty set. (Contributed by Jim Kingdon, 1-Aug-2018.) |
Ref | Expression |
---|---|
abvor0dc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dc 825 | . 2 DECID | |
2 | id 19 | . . . . 5 | |
3 | vex 2729 | . . . . . 6 | |
4 | 3 | a1i 9 | . . . . 5 |
5 | 2, 4 | 2thd 174 | . . . 4 |
6 | 5 | abbi1dv 2286 | . . 3 |
7 | id 19 | . . . . 5 | |
8 | noel 3413 | . . . . . 6 | |
9 | 8 | a1i 9 | . . . . 5 |
10 | 7, 9 | 2falsed 692 | . . . 4 |
11 | 10 | abbi1dv 2286 | . . 3 |
12 | 6, 11 | orim12i 749 | . 2 |
13 | 1, 12 | sylbi 120 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wo 698 DECID wdc 824 wceq 1343 wcel 2136 cab 2151 cvv 2726 c0 3409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-nul 3410 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |