ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abvor0dc Unicode version

Theorem abvor0dc 3492
Description: The class builder of a decidable proposition not containing the abstraction variable is either the universal class or the empty set. (Contributed by Jim Kingdon, 1-Aug-2018.)
Assertion
Ref Expression
abvor0dc  |-  (DECID  ph  ->  ( { x  |  ph }  =  _V  \/  { x  |  ph }  =  (/) ) )
Distinct variable group:    ph, x

Proof of Theorem abvor0dc
StepHypRef Expression
1 df-dc 837 . 2  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
2 id 19 . . . . 5  |-  ( ph  ->  ph )
3 vex 2779 . . . . . 6  |-  x  e. 
_V
43a1i 9 . . . . 5  |-  ( ph  ->  x  e.  _V )
52, 42thd 175 . . . 4  |-  ( ph  ->  ( ph  <->  x  e.  _V ) )
65abbi1dv 2327 . . 3  |-  ( ph  ->  { x  |  ph }  =  _V )
7 id 19 . . . . 5  |-  ( -. 
ph  ->  -.  ph )
8 noel 3472 . . . . . 6  |-  -.  x  e.  (/)
98a1i 9 . . . . 5  |-  ( -. 
ph  ->  -.  x  e.  (/) )
107, 92falsed 704 . . . 4  |-  ( -. 
ph  ->  ( ph  <->  x  e.  (/) ) )
1110abbi1dv 2327 . . 3  |-  ( -. 
ph  ->  { x  | 
ph }  =  (/) )
126, 11orim12i 761 . 2  |-  ( (
ph  \/  -.  ph )  ->  ( { x  | 
ph }  =  _V  \/  { x  |  ph }  =  (/) ) )
131, 12sylbi 121 1  |-  (DECID  ph  ->  ( { x  |  ph }  =  _V  \/  { x  |  ph }  =  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2178   {cab 2193   _Vcvv 2776   (/)c0 3468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-dc 837  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-dif 3176  df-nul 3469
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator