Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  0inp0 Unicode version

Theorem 0inp0 4122
 Description: Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 30-Sep-2003.)
Assertion
Ref Expression
0inp0

Proof of Theorem 0inp0
StepHypRef Expression
1 0nep0 4121 . . 3
2 neeq1 2337 . . 3
31, 2mpbiri 167 . 2
43neneqd 2345 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wceq 1332   wne 2324  c0 3390  csn 3556 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136  ax-nul 4086 This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-v 2711  df-dif 3100  df-nul 3391  df-sn 3562 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator