ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0inp0 Unicode version

Theorem 0inp0 4152
Description: Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 30-Sep-2003.)
Assertion
Ref Expression
0inp0  |-  ( A  =  (/)  ->  -.  A  =  { (/) } )

Proof of Theorem 0inp0
StepHypRef Expression
1 0nep0 4151 . . 3  |-  (/)  =/=  { (/)
}
2 neeq1 2353 . . 3  |-  ( A  =  (/)  ->  ( A  =/=  { (/) }  <->  (/)  =/=  { (/)
} ) )
31, 2mpbiri 167 . 2  |-  ( A  =  (/)  ->  A  =/= 
{ (/) } )
43neneqd 2361 1  |-  ( A  =  (/)  ->  -.  A  =  { (/) } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1348    =/= wne 2340   (/)c0 3414   {csn 3583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-nul 4115
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-v 2732  df-dif 3123  df-nul 3415  df-sn 3589
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator