| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 0inp0 | GIF version | ||
| Description: Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 30-Sep-2003.) | 
| Ref | Expression | 
|---|---|
| 0inp0 | ⊢ (𝐴 = ∅ → ¬ 𝐴 = {∅}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0nep0 4198 | . . 3 ⊢ ∅ ≠ {∅} | |
| 2 | neeq1 2380 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≠ {∅} ↔ ∅ ≠ {∅})) | |
| 3 | 1, 2 | mpbiri 168 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≠ {∅}) | 
| 4 | 3 | neneqd 2388 | 1 ⊢ (𝐴 = ∅ → ¬ 𝐴 = {∅}) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ≠ wne 2367 ∅c0 3450 {csn 3622 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-nul 4159 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-v 2765 df-dif 3159 df-nul 3451 df-sn 3628 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |