| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0inp0 | GIF version | ||
| Description: Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 30-Sep-2003.) |
| Ref | Expression |
|---|---|
| 0inp0 | ⊢ (𝐴 = ∅ → ¬ 𝐴 = {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nep0 4213 | . . 3 ⊢ ∅ ≠ {∅} | |
| 2 | neeq1 2390 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≠ {∅} ↔ ∅ ≠ {∅})) | |
| 3 | 1, 2 | mpbiri 168 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≠ {∅}) |
| 4 | 3 | neneqd 2398 | 1 ⊢ (𝐴 = ∅ → ¬ 𝐴 = {∅}) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1373 ≠ wne 2377 ∅c0 3461 {csn 3634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-nul 4174 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-v 2775 df-dif 3169 df-nul 3462 df-sn 3640 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |