ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nep0 Unicode version

Theorem 0nep0 4225
Description: The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.)
Assertion
Ref Expression
0nep0  |-  (/)  =/=  { (/)
}

Proof of Theorem 0nep0
StepHypRef Expression
1 0ex 4187 . . 3  |-  (/)  e.  _V
21snnz 3762 . 2  |-  { (/) }  =/=  (/)
32necomi 2463 1  |-  (/)  =/=  { (/)
}
Colors of variables: wff set class
Syntax hints:    =/= wne 2378   (/)c0 3468   {csn 3643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-nul 4186
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-v 2778  df-dif 3176  df-nul 3469  df-sn 3649
This theorem is referenced by:  0inp0  4226  opthprc  4744  2dom  6921  exmidpw  7031  exmidpw2en  7035  exmidaclem  7351  pw1dom2  7373
  Copyright terms: Public domain W3C validator