ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nep0 Unicode version

Theorem 0nep0 4209
Description: The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.)
Assertion
Ref Expression
0nep0  |-  (/)  =/=  { (/)
}

Proof of Theorem 0nep0
StepHypRef Expression
1 0ex 4171 . . 3  |-  (/)  e.  _V
21snnz 3752 . 2  |-  { (/) }  =/=  (/)
32necomi 2461 1  |-  (/)  =/=  { (/)
}
Colors of variables: wff set class
Syntax hints:    =/= wne 2376   (/)c0 3460   {csn 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-nul 4170
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-v 2774  df-dif 3168  df-nul 3461  df-sn 3639
This theorem is referenced by:  0inp0  4210  opthprc  4726  2dom  6897  exmidpw  7005  exmidpw2en  7009  exmidaclem  7320  pw1dom2  7339
  Copyright terms: Public domain W3C validator