![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0nep0 | Unicode version |
Description: The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.) |
Ref | Expression |
---|---|
0nep0 |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4145 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | snnz 3726 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | necomi 2445 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 ax-nul 4144 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-v 2754 df-dif 3146 df-nul 3438 df-sn 3613 |
This theorem is referenced by: 0inp0 4181 opthprc 4692 2dom 6823 exmidpw 6926 exmidaclem 7225 pw1dom2 7244 |
Copyright terms: Public domain | W3C validator |