ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nep0 Unicode version

Theorem 0nep0 4249
Description: The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.)
Assertion
Ref Expression
0nep0  |-  (/)  =/=  { (/)
}

Proof of Theorem 0nep0
StepHypRef Expression
1 0ex 4211 . . 3  |-  (/)  e.  _V
21snnz 3786 . 2  |-  { (/) }  =/=  (/)
32necomi 2485 1  |-  (/)  =/=  { (/)
}
Colors of variables: wff set class
Syntax hints:    =/= wne 2400   (/)c0 3491   {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-nul 4210
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-v 2801  df-dif 3199  df-nul 3492  df-sn 3672
This theorem is referenced by:  0inp0  4250  opthprc  4770  2dom  6958  exmidpw  7070  exmidpw2en  7074  exmidaclem  7390  pw1dom2  7412
  Copyright terms: Public domain W3C validator