ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1xr Unicode version

Theorem 1xr 7978
Description:  1 is an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
1xr  |-  1  e.  RR*

Proof of Theorem 1xr
StepHypRef Expression
1 1re 7919 . 2  |-  1  e.  RR
21rexri 7977 1  |-  1  e.  RR*
Colors of variables: wff set class
Syntax hints:    e. wcel 2141   1c1 7775   RR*cxr 7953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-1re 7868
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-xr 7958
This theorem is referenced by:  fprodge1  11602
  Copyright terms: Public domain W3C validator