| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1re | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| 1re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1re 7990 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1re 7990 |
| This theorem is referenced by: 0re 8043 1red 8058 1xr 8102 0lt1 8170 peano2re 8179 peano2rem 8310 0reALT 8340 0le1 8525 1le1 8616 inelr 8628 1ap0 8634 eqneg 8776 ltp1 8888 ltm1 8890 recgt0 8894 mulgt1 8907 ltmulgt11 8908 lemulge11 8910 reclt1 8940 recgt1 8941 recgt1i 8942 recp1lt1 8943 recreclt 8944 sup3exmid 9001 cju 9005 peano5nni 9010 nnssre 9011 1nn 9018 nnge1 9030 nnle1eq1 9031 nngt0 9032 nnnlt1 9033 nn1gt1 9041 nngt1ne1 9042 nnrecre 9044 nnrecgt0 9045 nnsub 9046 2re 9077 3re 9081 4re 9084 5re 9086 6re 9088 7re 9090 8re 9092 9re 9094 0le2 9097 2pos 9098 3pos 9101 4pos 9104 5pos 9107 6pos 9108 7pos 9109 8pos 9110 9pos 9111 neg1rr 9113 neg1lt0 9115 1lt2 9177 1lt3 9179 1lt4 9182 1lt5 9186 1lt6 9191 1lt7 9197 1lt8 9204 1lt9 9212 1ne2 9214 1ap2 9215 1le2 9216 1le3 9219 halflt1 9225 iap0 9231 addltmul 9245 elnnnn0c 9311 nn0ge2m1nn 9326 elnnz1 9366 zltp1le 9397 zleltp1 9398 recnz 9436 gtndiv 9438 3halfnz 9440 1lt10 9612 eluzp1m1 9642 eluzp1p1 9644 eluz2b2 9694 1rp 9749 divlt1lt 9816 divle1le 9817 nnledivrp 9858 0elunit 10078 1elunit 10079 divelunit 10094 lincmb01cmp 10095 iccf1o 10096 unitssre 10097 fzpreddisj 10163 fznatpl1 10168 fztpval 10175 qbtwnxr 10364 flqbi2 10398 fldiv4p1lem1div2 10412 flqdiv 10430 seqf1oglem1 10628 reexpcl 10665 reexpclzap 10668 expge0 10684 expge1 10685 expgt1 10686 bernneq 10769 bernneq2 10770 expnbnd 10772 expnlbnd 10773 expnlbnd2 10774 nn0ltexp2 10818 facwordi 10849 faclbnd3 10852 faclbnd6 10853 facavg 10855 cjexp 11075 re1 11079 im1 11080 rei 11081 imi 11082 caucvgre 11163 sqrt1 11228 sqrt2gt1lt2 11231 abs1 11254 caubnd2 11299 mulcn2 11494 reccn2ap 11495 expcnvap0 11684 geo2sum 11696 cvgratnnlemrate 11712 fprodge0 11819 fprodge1 11821 fprodle 11822 ere 11852 ege2le3 11853 efgt1 11879 resin4p 11900 recos4p 11901 sinbnd 11934 cosbnd 11935 sinbnd2 11936 cosbnd2 11937 ef01bndlem 11938 sin01bnd 11939 cos01bnd 11940 cos1bnd 11941 cos2bnd 11942 sinltxirr 11943 sin01gt0 11944 cos01gt0 11945 sin02gt0 11946 sincos1sgn 11947 cos12dec 11950 ene1 11967 eap1 11968 3dvds 12046 halfleoddlt 12076 flodddiv4 12118 isprm3 12311 sqnprm 12329 coprm 12337 phibndlem 12409 pythagtriplem3 12461 fldivp1 12542 pockthi 12552 exmidunben 12668 basendxnmulrndx 12836 starvndxnbasendx 12844 scandxnbasendx 12856 vscandxnbasendx 12861 ipndxnbasendx 12874 basendxnocndx 12915 setsmsbasg 14799 tgioo 14874 dveflem 15046 reeff1olem 15091 reeff1o 15093 cosz12 15100 sinhalfpilem 15111 tangtx 15158 sincos4thpi 15160 pigt3 15164 coskpi 15168 cos0pilt1 15172 ioocosf1o 15174 loge 15187 logrpap0b 15196 logdivlti 15201 2logb9irrALT 15294 sqrt2cxp2logb9e3 15295 perfectlem2 15320 lgsdir 15360 lgsne0 15363 lgsabs1 15364 lgsdinn0 15373 gausslemma2dlem0i 15382 lgseisen 15399 2lgslem3 15426 ex-fl 15455 cvgcmp2nlemabs 15763 iooref1o 15765 trilpolemclim 15767 trilpolemcl 15768 trilpolemisumle 15769 trilpolemeq1 15771 trilpolemlt1 15772 apdiff 15779 nconstwlpolemgt0 15795 |
| Copyright terms: Public domain | W3C validator |