![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1re | Unicode version |
Description: ![]() |
Ref | Expression |
---|---|
1re |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1re 7966 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1re 7966 |
This theorem is referenced by: 0re 8019 1red 8034 1xr 8078 0lt1 8146 peano2re 8155 peano2rem 8286 0reALT 8316 0le1 8500 1le1 8591 inelr 8603 1ap0 8609 eqneg 8751 ltp1 8863 ltm1 8865 recgt0 8869 mulgt1 8882 ltmulgt11 8883 lemulge11 8885 reclt1 8915 recgt1 8916 recgt1i 8917 recp1lt1 8918 recreclt 8919 sup3exmid 8976 cju 8980 peano5nni 8985 nnssre 8986 1nn 8993 nnge1 9005 nnle1eq1 9006 nngt0 9007 nnnlt1 9008 nn1gt1 9016 nngt1ne1 9017 nnrecre 9019 nnrecgt0 9020 nnsub 9021 2re 9052 3re 9056 4re 9059 5re 9061 6re 9063 7re 9065 8re 9067 9re 9069 0le2 9072 2pos 9073 3pos 9076 4pos 9079 5pos 9082 6pos 9083 7pos 9084 8pos 9085 9pos 9086 neg1rr 9088 neg1lt0 9090 1lt2 9151 1lt3 9153 1lt4 9156 1lt5 9160 1lt6 9165 1lt7 9171 1lt8 9178 1lt9 9186 1ne2 9188 1ap2 9189 1le2 9190 1le3 9193 halflt1 9199 iap0 9205 addltmul 9219 elnnnn0c 9285 nn0ge2m1nn 9300 elnnz1 9340 zltp1le 9371 zleltp1 9372 recnz 9410 gtndiv 9412 3halfnz 9414 1lt10 9586 eluzp1m1 9616 eluzp1p1 9618 eluz2b2 9668 1rp 9723 divlt1lt 9790 divle1le 9791 nnledivrp 9832 0elunit 10052 1elunit 10053 divelunit 10068 lincmb01cmp 10069 iccf1o 10070 unitssre 10071 fzpreddisj 10137 fznatpl1 10142 fztpval 10149 qbtwnxr 10326 flqbi2 10360 fldiv4p1lem1div2 10374 flqdiv 10392 seqf1oglem1 10590 reexpcl 10627 reexpclzap 10630 expge0 10646 expge1 10647 expgt1 10648 bernneq 10731 bernneq2 10732 expnbnd 10734 expnlbnd 10735 expnlbnd2 10736 nn0ltexp2 10780 facwordi 10811 faclbnd3 10814 faclbnd6 10815 facavg 10817 cjexp 11037 re1 11041 im1 11042 rei 11043 imi 11044 caucvgre 11125 sqrt1 11190 sqrt2gt1lt2 11193 abs1 11216 caubnd2 11261 mulcn2 11455 reccn2ap 11456 expcnvap0 11645 geo2sum 11657 cvgratnnlemrate 11673 fprodge0 11780 fprodge1 11782 fprodle 11783 ere 11813 ege2le3 11814 efgt1 11840 resin4p 11861 recos4p 11862 sinbnd 11895 cosbnd 11896 sinbnd2 11897 cosbnd2 11898 ef01bndlem 11899 sin01bnd 11900 cos01bnd 11901 cos1bnd 11902 cos2bnd 11903 sinltxirr 11904 sin01gt0 11905 cos01gt0 11906 sin02gt0 11907 sincos1sgn 11908 cos12dec 11911 ene1 11928 eap1 11929 halfleoddlt 12035 flodddiv4 12075 isprm3 12256 sqnprm 12274 coprm 12282 phibndlem 12354 pythagtriplem3 12405 fldivp1 12486 pockthi 12496 exmidunben 12583 basendxnmulrndx 12751 starvndxnbasendx 12759 scandxnbasendx 12771 vscandxnbasendx 12776 ipndxnbasendx 12789 setsmsbasg 14647 tgioo 14714 dveflem 14872 reeff1olem 14906 reeff1o 14908 cosz12 14915 sinhalfpilem 14926 tangtx 14973 sincos4thpi 14975 pigt3 14979 coskpi 14983 cos0pilt1 14987 ioocosf1o 14989 loge 15002 logrpap0b 15011 logdivlti 15016 2logb9irrALT 15106 sqrt2cxp2logb9e3 15107 lgsdir 15151 lgsne0 15154 lgsabs1 15155 lgsdinn0 15164 gausslemma2dlem0i 15173 lgseisen 15190 ex-fl 15217 cvgcmp2nlemabs 15522 iooref1o 15524 trilpolemclim 15526 trilpolemcl 15527 trilpolemisumle 15528 trilpolemeq1 15530 trilpolemlt1 15531 apdiff 15538 nconstwlpolemgt0 15554 |
Copyright terms: Public domain | W3C validator |