![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1re | Unicode version |
Description: ![]() |
Ref | Expression |
---|---|
1re |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1re 7880 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1re 7880 |
This theorem is referenced by: 0re 7932 1red 7947 1xr 7990 0lt1 8058 peano2re 8067 peano2rem 8198 0reALT 8228 0le1 8412 1le1 8503 inelr 8515 1ap0 8521 eqneg 8661 ltp1 8772 ltm1 8774 recgt0 8778 mulgt1 8791 ltmulgt11 8792 lemulge11 8794 reclt1 8824 recgt1 8825 recgt1i 8826 recp1lt1 8827 recreclt 8828 sup3exmid 8885 cju 8889 peano5nni 8893 nnssre 8894 1nn 8901 nnge1 8913 nnle1eq1 8914 nngt0 8915 nnnlt1 8916 nn1gt1 8924 nngt1ne1 8925 nnrecre 8927 nnrecgt0 8928 nnsub 8929 2re 8960 3re 8964 4re 8967 5re 8969 6re 8971 7re 8973 8re 8975 9re 8977 0le2 8980 2pos 8981 3pos 8984 4pos 8987 5pos 8990 6pos 8991 7pos 8992 8pos 8993 9pos 8994 neg1rr 8996 neg1lt0 8998 1lt2 9059 1lt3 9061 1lt4 9064 1lt5 9068 1lt6 9073 1lt7 9079 1lt8 9086 1lt9 9094 1ne2 9096 1ap2 9097 1le2 9098 1le3 9101 halflt1 9107 iap0 9113 addltmul 9126 elnnnn0c 9192 nn0ge2m1nn 9207 elnnz1 9247 zltp1le 9278 zleltp1 9279 recnz 9317 gtndiv 9319 3halfnz 9321 1lt10 9493 eluzp1m1 9522 eluzp1p1 9524 eluz2b2 9574 1rp 9626 divlt1lt 9693 divle1le 9694 nnledivrp 9735 0elunit 9955 1elunit 9956 divelunit 9971 lincmb01cmp 9972 iccf1o 9973 unitssre 9974 fzpreddisj 10039 fznatpl1 10044 fztpval 10051 qbtwnxr 10226 flqbi2 10259 fldiv4p1lem1div2 10273 flqdiv 10289 reexpcl 10505 reexpclzap 10508 expge0 10524 expge1 10525 expgt1 10526 bernneq 10608 bernneq2 10609 expnbnd 10611 expnlbnd 10612 expnlbnd2 10613 nn0ltexp2 10656 facwordi 10686 faclbnd3 10689 faclbnd6 10690 facavg 10692 cjexp 10868 re1 10872 im1 10873 rei 10874 imi 10875 caucvgre 10956 sqrt1 11021 sqrt2gt1lt2 11024 abs1 11047 caubnd2 11092 mulcn2 11286 reccn2ap 11287 expcnvap0 11476 geo2sum 11488 cvgratnnlemrate 11504 fprodge0 11611 fprodge1 11613 fprodle 11614 ere 11644 ege2le3 11645 efgt1 11671 resin4p 11692 recos4p 11693 sinbnd 11726 cosbnd 11727 sinbnd2 11728 cosbnd2 11729 ef01bndlem 11730 sin01bnd 11731 cos01bnd 11732 cos1bnd 11733 cos2bnd 11734 sin01gt0 11735 cos01gt0 11736 sin02gt0 11737 sincos1sgn 11738 cos12dec 11741 ene1 11758 eap1 11759 halfleoddlt 11864 flodddiv4 11904 isprm3 12083 sqnprm 12101 coprm 12109 phibndlem 12181 pythagtriplem3 12232 fldivp1 12311 pockthi 12321 exmidunben 12392 basendxnmulrndx 12543 scandxnbasendx 12559 setsmsbasg 13530 tgioo 13597 dveflem 13738 reeff1olem 13743 reeff1o 13745 cosz12 13752 sinhalfpilem 13763 tangtx 13810 sincos4thpi 13812 pigt3 13816 coskpi 13820 cos0pilt1 13824 ioocosf1o 13826 loge 13839 logrpap0b 13848 logdivlti 13853 2logb9irrALT 13943 sqrt2cxp2logb9e3 13944 lgsdir 13987 lgsne0 13990 lgsabs1 13991 lgsdinn0 14000 ex-fl 14017 cvgcmp2nlemabs 14321 iooref1o 14323 trilpolemclim 14325 trilpolemcl 14326 trilpolemisumle 14327 trilpolemeq1 14329 trilpolemlt1 14330 apdiff 14337 nconstwlpolemgt0 14352 |
Copyright terms: Public domain | W3C validator |