| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1re | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| 1re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1re 8054 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1re 8054 |
| This theorem is referenced by: 0re 8107 1red 8122 1xr 8166 0lt1 8234 peano2re 8243 peano2rem 8374 0reALT 8404 0le1 8589 1le1 8680 inelr 8692 1ap0 8698 eqneg 8840 ltp1 8952 ltm1 8954 recgt0 8958 mulgt1 8971 ltmulgt11 8972 lemulge11 8974 reclt1 9004 recgt1 9005 recgt1i 9006 recp1lt1 9007 recreclt 9008 sup3exmid 9065 cju 9069 peano5nni 9074 nnssre 9075 1nn 9082 nnge1 9094 nnle1eq1 9095 nngt0 9096 nnnlt1 9097 nn1gt1 9105 nngt1ne1 9106 nnrecre 9108 nnrecgt0 9109 nnsub 9110 2re 9141 3re 9145 4re 9148 5re 9150 6re 9152 7re 9154 8re 9156 9re 9158 0le2 9161 2pos 9162 3pos 9165 4pos 9168 5pos 9171 6pos 9172 7pos 9173 8pos 9174 9pos 9175 neg1rr 9177 neg1lt0 9179 1lt2 9241 1lt3 9243 1lt4 9246 1lt5 9250 1lt6 9255 1lt7 9261 1lt8 9268 1lt9 9276 1ne2 9278 1ap2 9279 1le2 9280 1le3 9283 halflt1 9289 iap0 9295 addltmul 9309 elnnnn0c 9375 nn0ge2m1nn 9390 elnnz1 9430 zltp1le 9462 zleltp1 9463 recnz 9501 gtndiv 9503 3halfnz 9505 1lt10 9677 eluzp1m1 9707 eluzp1p1 9709 eluz2b2 9759 1rp 9814 divlt1lt 9881 divle1le 9882 nnledivrp 9923 0elunit 10143 1elunit 10144 divelunit 10159 lincmb01cmp 10160 iccf1o 10161 unitssre 10162 fzpreddisj 10228 fznatpl1 10233 fztpval 10240 qbtwnxr 10437 flqbi2 10471 fldiv4p1lem1div2 10485 flqdiv 10503 seqf1oglem1 10701 reexpcl 10738 reexpclzap 10741 expge0 10757 expge1 10758 expgt1 10759 bernneq 10842 bernneq2 10843 expnbnd 10845 expnlbnd 10846 expnlbnd2 10847 nn0ltexp2 10891 facwordi 10922 faclbnd3 10925 faclbnd6 10926 facavg 10928 lsw0 11078 cjexp 11319 re1 11323 im1 11324 rei 11325 imi 11326 caucvgre 11407 sqrt1 11472 sqrt2gt1lt2 11475 abs1 11498 caubnd2 11543 mulcn2 11738 reccn2ap 11739 expcnvap0 11928 geo2sum 11940 cvgratnnlemrate 11956 fprodge0 12063 fprodge1 12065 fprodle 12066 ere 12096 ege2le3 12097 efgt1 12123 resin4p 12144 recos4p 12145 sinbnd 12178 cosbnd 12179 sinbnd2 12180 cosbnd2 12181 ef01bndlem 12182 sin01bnd 12183 cos01bnd 12184 cos1bnd 12185 cos2bnd 12186 sinltxirr 12187 sin01gt0 12188 cos01gt0 12189 sin02gt0 12190 sincos1sgn 12191 cos12dec 12194 ene1 12211 eap1 12212 3dvds 12290 halfleoddlt 12320 flodddiv4 12362 isprm3 12555 sqnprm 12573 coprm 12581 phibndlem 12653 pythagtriplem3 12705 fldivp1 12786 pockthi 12796 exmidunben 12912 basendxnmulrndx 13081 starvndxnbasendx 13089 scandxnbasendx 13101 vscandxnbasendx 13106 ipndxnbasendx 13119 basendxnocndx 13160 setsmsbasg 15066 tgioo 15141 dveflem 15313 reeff1olem 15358 reeff1o 15360 cosz12 15367 sinhalfpilem 15378 tangtx 15425 sincos4thpi 15427 pigt3 15431 coskpi 15435 cos0pilt1 15439 ioocosf1o 15441 loge 15454 logrpap0b 15463 logdivlti 15468 2logb9irrALT 15561 sqrt2cxp2logb9e3 15562 perfectlem2 15587 lgsdir 15627 lgsne0 15630 lgsabs1 15631 lgsdinn0 15640 gausslemma2dlem0i 15649 lgseisen 15666 2lgslem3 15693 ex-fl 15861 cvgcmp2nlemabs 16173 iooref1o 16175 trilpolemclim 16177 trilpolemcl 16178 trilpolemisumle 16179 trilpolemeq1 16181 trilpolemlt1 16182 apdiff 16189 nconstwlpolemgt0 16205 |
| Copyright terms: Public domain | W3C validator |