| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1re | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| 1re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1re 8021 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1re 8021 |
| This theorem is referenced by: 0re 8074 1red 8089 1xr 8133 0lt1 8201 peano2re 8210 peano2rem 8341 0reALT 8371 0le1 8556 1le1 8647 inelr 8659 1ap0 8665 eqneg 8807 ltp1 8919 ltm1 8921 recgt0 8925 mulgt1 8938 ltmulgt11 8939 lemulge11 8941 reclt1 8971 recgt1 8972 recgt1i 8973 recp1lt1 8974 recreclt 8975 sup3exmid 9032 cju 9036 peano5nni 9041 nnssre 9042 1nn 9049 nnge1 9061 nnle1eq1 9062 nngt0 9063 nnnlt1 9064 nn1gt1 9072 nngt1ne1 9073 nnrecre 9075 nnrecgt0 9076 nnsub 9077 2re 9108 3re 9112 4re 9115 5re 9117 6re 9119 7re 9121 8re 9123 9re 9125 0le2 9128 2pos 9129 3pos 9132 4pos 9135 5pos 9138 6pos 9139 7pos 9140 8pos 9141 9pos 9142 neg1rr 9144 neg1lt0 9146 1lt2 9208 1lt3 9210 1lt4 9213 1lt5 9217 1lt6 9222 1lt7 9228 1lt8 9235 1lt9 9243 1ne2 9245 1ap2 9246 1le2 9247 1le3 9250 halflt1 9256 iap0 9262 addltmul 9276 elnnnn0c 9342 nn0ge2m1nn 9357 elnnz1 9397 zltp1le 9429 zleltp1 9430 recnz 9468 gtndiv 9470 3halfnz 9472 1lt10 9644 eluzp1m1 9674 eluzp1p1 9676 eluz2b2 9726 1rp 9781 divlt1lt 9848 divle1le 9849 nnledivrp 9890 0elunit 10110 1elunit 10111 divelunit 10126 lincmb01cmp 10127 iccf1o 10128 unitssre 10129 fzpreddisj 10195 fznatpl1 10200 fztpval 10207 qbtwnxr 10402 flqbi2 10436 fldiv4p1lem1div2 10450 flqdiv 10468 seqf1oglem1 10666 reexpcl 10703 reexpclzap 10706 expge0 10722 expge1 10723 expgt1 10724 bernneq 10807 bernneq2 10808 expnbnd 10810 expnlbnd 10811 expnlbnd2 10812 nn0ltexp2 10856 facwordi 10887 faclbnd3 10890 faclbnd6 10891 facavg 10893 lsw0 11043 cjexp 11237 re1 11241 im1 11242 rei 11243 imi 11244 caucvgre 11325 sqrt1 11390 sqrt2gt1lt2 11393 abs1 11416 caubnd2 11461 mulcn2 11656 reccn2ap 11657 expcnvap0 11846 geo2sum 11858 cvgratnnlemrate 11874 fprodge0 11981 fprodge1 11983 fprodle 11984 ere 12014 ege2le3 12015 efgt1 12041 resin4p 12062 recos4p 12063 sinbnd 12096 cosbnd 12097 sinbnd2 12098 cosbnd2 12099 ef01bndlem 12100 sin01bnd 12101 cos01bnd 12102 cos1bnd 12103 cos2bnd 12104 sinltxirr 12105 sin01gt0 12106 cos01gt0 12107 sin02gt0 12108 sincos1sgn 12109 cos12dec 12112 ene1 12129 eap1 12130 3dvds 12208 halfleoddlt 12238 flodddiv4 12280 isprm3 12473 sqnprm 12491 coprm 12499 phibndlem 12571 pythagtriplem3 12623 fldivp1 12704 pockthi 12714 exmidunben 12830 basendxnmulrndx 12999 starvndxnbasendx 13007 scandxnbasendx 13019 vscandxnbasendx 13024 ipndxnbasendx 13037 basendxnocndx 13078 setsmsbasg 14984 tgioo 15059 dveflem 15231 reeff1olem 15276 reeff1o 15278 cosz12 15285 sinhalfpilem 15296 tangtx 15343 sincos4thpi 15345 pigt3 15349 coskpi 15353 cos0pilt1 15357 ioocosf1o 15359 loge 15372 logrpap0b 15381 logdivlti 15386 2logb9irrALT 15479 sqrt2cxp2logb9e3 15480 perfectlem2 15505 lgsdir 15545 lgsne0 15548 lgsabs1 15549 lgsdinn0 15558 gausslemma2dlem0i 15567 lgseisen 15584 2lgslem3 15611 ex-fl 15698 cvgcmp2nlemabs 16008 iooref1o 16010 trilpolemclim 16012 trilpolemcl 16013 trilpolemisumle 16014 trilpolemeq1 16016 trilpolemlt1 16017 apdiff 16024 nconstwlpolemgt0 16040 |
| Copyright terms: Public domain | W3C validator |