![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1re | Unicode version |
Description: ![]() |
Ref | Expression |
---|---|
1re |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1re 7905 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1re 7905 |
This theorem is referenced by: 0re 7957 1red 7972 1xr 8016 0lt1 8084 peano2re 8093 peano2rem 8224 0reALT 8254 0le1 8438 1le1 8529 inelr 8541 1ap0 8547 eqneg 8689 ltp1 8801 ltm1 8803 recgt0 8807 mulgt1 8820 ltmulgt11 8821 lemulge11 8823 reclt1 8853 recgt1 8854 recgt1i 8855 recp1lt1 8856 recreclt 8857 sup3exmid 8914 cju 8918 peano5nni 8922 nnssre 8923 1nn 8930 nnge1 8942 nnle1eq1 8943 nngt0 8944 nnnlt1 8945 nn1gt1 8953 nngt1ne1 8954 nnrecre 8956 nnrecgt0 8957 nnsub 8958 2re 8989 3re 8993 4re 8996 5re 8998 6re 9000 7re 9002 8re 9004 9re 9006 0le2 9009 2pos 9010 3pos 9013 4pos 9016 5pos 9019 6pos 9020 7pos 9021 8pos 9022 9pos 9023 neg1rr 9025 neg1lt0 9027 1lt2 9088 1lt3 9090 1lt4 9093 1lt5 9097 1lt6 9102 1lt7 9108 1lt8 9115 1lt9 9123 1ne2 9125 1ap2 9126 1le2 9127 1le3 9130 halflt1 9136 iap0 9142 addltmul 9155 elnnnn0c 9221 nn0ge2m1nn 9236 elnnz1 9276 zltp1le 9307 zleltp1 9308 recnz 9346 gtndiv 9348 3halfnz 9350 1lt10 9522 eluzp1m1 9551 eluzp1p1 9553 eluz2b2 9603 1rp 9657 divlt1lt 9724 divle1le 9725 nnledivrp 9766 0elunit 9986 1elunit 9987 divelunit 10002 lincmb01cmp 10003 iccf1o 10004 unitssre 10005 fzpreddisj 10071 fznatpl1 10076 fztpval 10083 qbtwnxr 10258 flqbi2 10291 fldiv4p1lem1div2 10305 flqdiv 10321 reexpcl 10537 reexpclzap 10540 expge0 10556 expge1 10557 expgt1 10558 bernneq 10641 bernneq2 10642 expnbnd 10644 expnlbnd 10645 expnlbnd2 10646 nn0ltexp2 10689 facwordi 10720 faclbnd3 10723 faclbnd6 10724 facavg 10726 cjexp 10902 re1 10906 im1 10907 rei 10908 imi 10909 caucvgre 10990 sqrt1 11055 sqrt2gt1lt2 11058 abs1 11081 caubnd2 11126 mulcn2 11320 reccn2ap 11321 expcnvap0 11510 geo2sum 11522 cvgratnnlemrate 11538 fprodge0 11645 fprodge1 11647 fprodle 11648 ere 11678 ege2le3 11679 efgt1 11705 resin4p 11726 recos4p 11727 sinbnd 11760 cosbnd 11761 sinbnd2 11762 cosbnd2 11763 ef01bndlem 11764 sin01bnd 11765 cos01bnd 11766 cos1bnd 11767 cos2bnd 11768 sin01gt0 11769 cos01gt0 11770 sin02gt0 11771 sincos1sgn 11772 cos12dec 11775 ene1 11792 eap1 11793 halfleoddlt 11899 flodddiv4 11939 isprm3 12118 sqnprm 12136 coprm 12144 phibndlem 12216 pythagtriplem3 12267 fldivp1 12346 pockthi 12356 exmidunben 12427 basendxnmulrndx 12592 starvndxnbasendx 12600 scandxnbasendx 12612 vscandxnbasendx 12617 ipndxnbasendx 12630 setsmsbasg 13982 tgioo 14049 dveflem 14190 reeff1olem 14195 reeff1o 14197 cosz12 14204 sinhalfpilem 14215 tangtx 14262 sincos4thpi 14264 pigt3 14268 coskpi 14272 cos0pilt1 14276 ioocosf1o 14278 loge 14291 logrpap0b 14300 logdivlti 14305 2logb9irrALT 14395 sqrt2cxp2logb9e3 14396 lgsdir 14439 lgsne0 14442 lgsabs1 14443 lgsdinn0 14452 ex-fl 14480 cvgcmp2nlemabs 14783 iooref1o 14785 trilpolemclim 14787 trilpolemcl 14788 trilpolemisumle 14789 trilpolemeq1 14791 trilpolemlt1 14792 apdiff 14799 nconstwlpolemgt0 14814 |
Copyright terms: Public domain | W3C validator |