| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1re | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| 1re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1re 8093 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1re 8093 |
| This theorem is referenced by: 0re 8146 1red 8161 1xr 8205 0lt1 8273 peano2re 8282 peano2rem 8413 0reALT 8443 0le1 8628 1le1 8719 inelr 8731 1ap0 8737 eqneg 8879 ltp1 8991 ltm1 8993 recgt0 8997 mulgt1 9010 ltmulgt11 9011 lemulge11 9013 reclt1 9043 recgt1 9044 recgt1i 9045 recp1lt1 9046 recreclt 9047 sup3exmid 9104 cju 9108 peano5nni 9113 nnssre 9114 1nn 9121 nnge1 9133 nnle1eq1 9134 nngt0 9135 nnnlt1 9136 nn1gt1 9144 nngt1ne1 9145 nnrecre 9147 nnrecgt0 9148 nnsub 9149 2re 9180 3re 9184 4re 9187 5re 9189 6re 9191 7re 9193 8re 9195 9re 9197 0le2 9200 2pos 9201 3pos 9204 4pos 9207 5pos 9210 6pos 9211 7pos 9212 8pos 9213 9pos 9214 neg1rr 9216 neg1lt0 9218 1lt2 9280 1lt3 9282 1lt4 9285 1lt5 9289 1lt6 9294 1lt7 9300 1lt8 9307 1lt9 9315 1ne2 9317 1ap2 9318 1le2 9319 1le3 9322 halflt1 9328 iap0 9334 addltmul 9348 elnnnn0c 9414 nn0ge2m1nn 9429 elnnz1 9469 zltp1le 9501 zleltp1 9502 recnz 9540 gtndiv 9542 3halfnz 9544 1lt10 9716 eluzp1m1 9746 eluzp1p1 9748 eluz2b2 9798 1rp 9853 divlt1lt 9920 divle1le 9921 nnledivrp 9962 0elunit 10182 1elunit 10183 divelunit 10198 lincmb01cmp 10199 iccf1o 10200 unitssre 10201 fzpreddisj 10267 fznatpl1 10272 fztpval 10279 qbtwnxr 10477 flqbi2 10511 fldiv4p1lem1div2 10525 flqdiv 10543 seqf1oglem1 10741 reexpcl 10778 reexpclzap 10781 expge0 10797 expge1 10798 expgt1 10799 bernneq 10882 bernneq2 10883 expnbnd 10885 expnlbnd 10886 expnlbnd2 10887 nn0ltexp2 10931 facwordi 10962 faclbnd3 10965 faclbnd6 10966 facavg 10968 lsw0 11119 cjexp 11404 re1 11408 im1 11409 rei 11410 imi 11411 caucvgre 11492 sqrt1 11557 sqrt2gt1lt2 11560 abs1 11583 caubnd2 11628 mulcn2 11823 reccn2ap 11824 expcnvap0 12013 geo2sum 12025 cvgratnnlemrate 12041 fprodge0 12148 fprodge1 12150 fprodle 12151 ere 12181 ege2le3 12182 efgt1 12208 resin4p 12229 recos4p 12230 sinbnd 12263 cosbnd 12264 sinbnd2 12265 cosbnd2 12266 ef01bndlem 12267 sin01bnd 12268 cos01bnd 12269 cos1bnd 12270 cos2bnd 12271 sinltxirr 12272 sin01gt0 12273 cos01gt0 12274 sin02gt0 12275 sincos1sgn 12276 cos12dec 12279 ene1 12296 eap1 12297 3dvds 12375 halfleoddlt 12405 flodddiv4 12447 isprm3 12640 sqnprm 12658 coprm 12666 phibndlem 12738 pythagtriplem3 12790 fldivp1 12871 pockthi 12881 exmidunben 12997 basendxnmulrndx 13167 starvndxnbasendx 13175 scandxnbasendx 13187 vscandxnbasendx 13192 ipndxnbasendx 13205 basendxnocndx 13246 setsmsbasg 15153 tgioo 15228 dveflem 15400 reeff1olem 15445 reeff1o 15447 cosz12 15454 sinhalfpilem 15465 tangtx 15512 sincos4thpi 15514 pigt3 15518 coskpi 15522 cos0pilt1 15526 ioocosf1o 15528 loge 15541 logrpap0b 15550 logdivlti 15555 2logb9irrALT 15648 sqrt2cxp2logb9e3 15649 perfectlem2 15674 lgsdir 15714 lgsne0 15717 lgsabs1 15718 lgsdinn0 15727 gausslemma2dlem0i 15736 lgseisen 15753 2lgslem3 15780 ex-fl 16089 cvgcmp2nlemabs 16400 iooref1o 16402 trilpolemclim 16404 trilpolemcl 16405 trilpolemisumle 16406 trilpolemeq1 16408 trilpolemlt1 16409 apdiff 16416 nconstwlpolemgt0 16432 |
| Copyright terms: Public domain | W3C validator |