| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1re | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| 1re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1re 8019 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1re 8019 |
| This theorem is referenced by: 0re 8072 1red 8087 1xr 8131 0lt1 8199 peano2re 8208 peano2rem 8339 0reALT 8369 0le1 8554 1le1 8645 inelr 8657 1ap0 8663 eqneg 8805 ltp1 8917 ltm1 8919 recgt0 8923 mulgt1 8936 ltmulgt11 8937 lemulge11 8939 reclt1 8969 recgt1 8970 recgt1i 8971 recp1lt1 8972 recreclt 8973 sup3exmid 9030 cju 9034 peano5nni 9039 nnssre 9040 1nn 9047 nnge1 9059 nnle1eq1 9060 nngt0 9061 nnnlt1 9062 nn1gt1 9070 nngt1ne1 9071 nnrecre 9073 nnrecgt0 9074 nnsub 9075 2re 9106 3re 9110 4re 9113 5re 9115 6re 9117 7re 9119 8re 9121 9re 9123 0le2 9126 2pos 9127 3pos 9130 4pos 9133 5pos 9136 6pos 9137 7pos 9138 8pos 9139 9pos 9140 neg1rr 9142 neg1lt0 9144 1lt2 9206 1lt3 9208 1lt4 9211 1lt5 9215 1lt6 9220 1lt7 9226 1lt8 9233 1lt9 9241 1ne2 9243 1ap2 9244 1le2 9245 1le3 9248 halflt1 9254 iap0 9260 addltmul 9274 elnnnn0c 9340 nn0ge2m1nn 9355 elnnz1 9395 zltp1le 9427 zleltp1 9428 recnz 9466 gtndiv 9468 3halfnz 9470 1lt10 9642 eluzp1m1 9672 eluzp1p1 9674 eluz2b2 9724 1rp 9779 divlt1lt 9846 divle1le 9847 nnledivrp 9888 0elunit 10108 1elunit 10109 divelunit 10124 lincmb01cmp 10125 iccf1o 10126 unitssre 10127 fzpreddisj 10193 fznatpl1 10198 fztpval 10205 qbtwnxr 10400 flqbi2 10434 fldiv4p1lem1div2 10448 flqdiv 10466 seqf1oglem1 10664 reexpcl 10701 reexpclzap 10704 expge0 10720 expge1 10721 expgt1 10722 bernneq 10805 bernneq2 10806 expnbnd 10808 expnlbnd 10809 expnlbnd2 10810 nn0ltexp2 10854 facwordi 10885 faclbnd3 10888 faclbnd6 10889 facavg 10891 lsw0 11041 cjexp 11204 re1 11208 im1 11209 rei 11210 imi 11211 caucvgre 11292 sqrt1 11357 sqrt2gt1lt2 11360 abs1 11383 caubnd2 11428 mulcn2 11623 reccn2ap 11624 expcnvap0 11813 geo2sum 11825 cvgratnnlemrate 11841 fprodge0 11948 fprodge1 11950 fprodle 11951 ere 11981 ege2le3 11982 efgt1 12008 resin4p 12029 recos4p 12030 sinbnd 12063 cosbnd 12064 sinbnd2 12065 cosbnd2 12066 ef01bndlem 12067 sin01bnd 12068 cos01bnd 12069 cos1bnd 12070 cos2bnd 12071 sinltxirr 12072 sin01gt0 12073 cos01gt0 12074 sin02gt0 12075 sincos1sgn 12076 cos12dec 12079 ene1 12096 eap1 12097 3dvds 12175 halfleoddlt 12205 flodddiv4 12247 isprm3 12440 sqnprm 12458 coprm 12466 phibndlem 12538 pythagtriplem3 12590 fldivp1 12671 pockthi 12681 exmidunben 12797 basendxnmulrndx 12966 starvndxnbasendx 12974 scandxnbasendx 12986 vscandxnbasendx 12991 ipndxnbasendx 13004 basendxnocndx 13045 setsmsbasg 14951 tgioo 15026 dveflem 15198 reeff1olem 15243 reeff1o 15245 cosz12 15252 sinhalfpilem 15263 tangtx 15310 sincos4thpi 15312 pigt3 15316 coskpi 15320 cos0pilt1 15324 ioocosf1o 15326 loge 15339 logrpap0b 15348 logdivlti 15353 2logb9irrALT 15446 sqrt2cxp2logb9e3 15447 perfectlem2 15472 lgsdir 15512 lgsne0 15515 lgsabs1 15516 lgsdinn0 15525 gausslemma2dlem0i 15534 lgseisen 15551 2lgslem3 15578 ex-fl 15665 cvgcmp2nlemabs 15975 iooref1o 15977 trilpolemclim 15979 trilpolemcl 15980 trilpolemisumle 15981 trilpolemeq1 15983 trilpolemlt1 15984 apdiff 15991 nconstwlpolemgt0 16007 |
| Copyright terms: Public domain | W3C validator |