ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  renfdisj Unicode version

Theorem renfdisj 8079
Description: The reals and the infinities are disjoint. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
renfdisj  |-  ( RR 
i^i  { +oo , -oo } )  =  (/)

Proof of Theorem renfdisj
StepHypRef Expression
1 disj 3495 . 2  |-  ( ( RR  i^i  { +oo , -oo } )  =  (/) 
<-> 
A. x  e.  RR  -.  x  e.  { +oo , -oo } )
2 vex 2763 . . . . 5  |-  x  e. 
_V
32elpr 3639 . . . 4  |-  ( x  e.  { +oo , -oo }  <->  ( x  = +oo  \/  x  = -oo ) )
4 renepnf 8067 . . . . . 6  |-  ( x  e.  RR  ->  x  =/= +oo )
54necon2bi 2419 . . . . 5  |-  ( x  = +oo  ->  -.  x  e.  RR )
6 renemnf 8068 . . . . . 6  |-  ( x  e.  RR  ->  x  =/= -oo )
76necon2bi 2419 . . . . 5  |-  ( x  = -oo  ->  -.  x  e.  RR )
85, 7jaoi 717 . . . 4  |-  ( ( x  = +oo  \/  x  = -oo )  ->  -.  x  e.  RR )
93, 8sylbi 121 . . 3  |-  ( x  e.  { +oo , -oo }  ->  -.  x  e.  RR )
109con2i 628 . 2  |-  ( x  e.  RR  ->  -.  x  e.  { +oo , -oo } )
111, 10mprgbir 2552 1  |-  ( RR 
i^i  { +oo , -oo } )  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 709    = wceq 1364    e. wcel 2164    i^i cin 3152   (/)c0 3446   {cpr 3619   RRcr 7871   +oocpnf 8051   -oocmnf 8052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-pnf 8056  df-mnf 8057
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator