ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  renfdisj Unicode version

Theorem renfdisj 7958
Description: The reals and the infinities are disjoint. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
renfdisj  |-  ( RR 
i^i  { +oo , -oo } )  =  (/)

Proof of Theorem renfdisj
StepHypRef Expression
1 disj 3457 . 2  |-  ( ( RR  i^i  { +oo , -oo } )  =  (/) 
<-> 
A. x  e.  RR  -.  x  e.  { +oo , -oo } )
2 vex 2729 . . . . 5  |-  x  e. 
_V
32elpr 3597 . . . 4  |-  ( x  e.  { +oo , -oo }  <->  ( x  = +oo  \/  x  = -oo ) )
4 renepnf 7946 . . . . . 6  |-  ( x  e.  RR  ->  x  =/= +oo )
54necon2bi 2391 . . . . 5  |-  ( x  = +oo  ->  -.  x  e.  RR )
6 renemnf 7947 . . . . . 6  |-  ( x  e.  RR  ->  x  =/= -oo )
76necon2bi 2391 . . . . 5  |-  ( x  = -oo  ->  -.  x  e.  RR )
85, 7jaoi 706 . . . 4  |-  ( ( x  = +oo  \/  x  = -oo )  ->  -.  x  e.  RR )
93, 8sylbi 120 . . 3  |-  ( x  e.  { +oo , -oo }  ->  -.  x  e.  RR )
109con2i 617 . 2  |-  ( x  e.  RR  ->  -.  x  e.  { +oo , -oo } )
111, 10mprgbir 2524 1  |-  ( RR 
i^i  { +oo , -oo } )  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 698    = wceq 1343    e. wcel 2136    i^i cin 3115   (/)c0 3409   {cpr 3577   RRcr 7752   +oocpnf 7930   -oocmnf 7931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-pnf 7935  df-mnf 7936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator