ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  renfdisj Unicode version

Theorem renfdisj 7824
Description: The reals and the infinities are disjoint. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
renfdisj  |-  ( RR 
i^i  { +oo , -oo } )  =  (/)

Proof of Theorem renfdisj
StepHypRef Expression
1 disj 3411 . 2  |-  ( ( RR  i^i  { +oo , -oo } )  =  (/) 
<-> 
A. x  e.  RR  -.  x  e.  { +oo , -oo } )
2 vex 2689 . . . . 5  |-  x  e. 
_V
32elpr 3548 . . . 4  |-  ( x  e.  { +oo , -oo }  <->  ( x  = +oo  \/  x  = -oo ) )
4 renepnf 7813 . . . . . 6  |-  ( x  e.  RR  ->  x  =/= +oo )
54necon2bi 2363 . . . . 5  |-  ( x  = +oo  ->  -.  x  e.  RR )
6 renemnf 7814 . . . . . 6  |-  ( x  e.  RR  ->  x  =/= -oo )
76necon2bi 2363 . . . . 5  |-  ( x  = -oo  ->  -.  x  e.  RR )
85, 7jaoi 705 . . . 4  |-  ( ( x  = +oo  \/  x  = -oo )  ->  -.  x  e.  RR )
93, 8sylbi 120 . . 3  |-  ( x  e.  { +oo , -oo }  ->  -.  x  e.  RR )
109con2i 616 . 2  |-  ( x  e.  RR  ->  -.  x  e.  { +oo , -oo } )
111, 10mprgbir 2490 1  |-  ( RR 
i^i  { +oo , -oo } )  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 697    = wceq 1331    e. wcel 1480    i^i cin 3070   (/)c0 3363   {cpr 3528   RRcr 7619   +oocpnf 7797   -oocmnf 7798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-uni 3737  df-pnf 7802  df-mnf 7803
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator