HomeHome Intuitionistic Logic Explorer
Theorem List (p. 83 of 140)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8201-8300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnegeq0d 8201 A number is zero iff its negative is zero. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( A  =  0  <->  -u A  =  0 ) )
 
Theoremnegne0bd 8202 A number is nonzero iff its negative is nonzero. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( A  =/=  0  <->  -u A  =/=  0
 ) )
 
Theoremnegcon1d 8203 Contraposition law for unary minus. Deduction form of negcon1 8150. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  (
 -u A  =  B  <->  -u B  =  A )
 )
 
Theoremnegcon1ad 8204 Contraposition law for unary minus. One-way deduction form of negcon1 8150. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  -u A  =  B )   =>    |-  ( ph  ->  -u B  =  A )
 
Theoremneg11ad 8205 The negatives of two complex numbers are equal iff they are equal. Deduction form of neg11 8149. Generalization of neg11d 8221. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  (
 -u A  =  -u B 
 <->  A  =  B ) )
 
Theoremnegned 8206 If two complex numbers are unequal, so are their negatives. Contrapositive of neg11d 8221. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A  =/=  B )   =>    |-  ( ph  ->  -u A  =/=  -u B )
 
Theoremnegne0d 8207 The negative of a nonzero number is nonzero. See also negap0d 8529 which is similar but for apart from zero rather than not equal to zero. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A  =/=  0 )   =>    |-  ( ph  ->  -u A  =/=  0 )
 
Theoremnegrebd 8208 The negative of a real is real. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  -u A  e.  RR )   =>    |-  ( ph  ->  A  e.  RR )
 
Theoremsubcld 8209 Closure law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( A  -  B )  e.  CC )
 
Theorempncand 8210 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( ( A  +  B )  -  B )  =  A )
 
Theorempncan2d 8211 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( ( A  +  B )  -  A )  =  B )
 
Theorempncan3d 8212 Subtraction and addition of equals. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( A  +  ( B  -  A ) )  =  B )
 
Theoremnpcand 8213 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( ( A  -  B )  +  B )  =  A )
 
Theoremnncand 8214 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( A  -  ( A  -  B ) )  =  B )
 
Theoremnegsubd 8215 Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( A  +  -u B )  =  ( A  -  B ) )
 
Theoremsubnegd 8216 Relationship between subtraction and negative. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( A  -  -u B )  =  ( A  +  B ) )
 
Theoremsubeq0d 8217 If the difference between two numbers is zero, they are equal. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  ( A  -  B )  =  0
 )   =>    |-  ( ph  ->  A  =  B )
 
Theoremsubne0d 8218 Two unequal numbers have nonzero difference. See also subap0d 8542 which is the same thing for apartness rather than negated equality. (Contributed by Mario Carneiro, 1-Jan-2017.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A  =/=  B )   =>    |-  ( ph  ->  ( A  -  B )  =/=  0 )
 
Theoremsubeq0ad 8219 The difference of two complex numbers is zero iff they are equal. Deduction form of subeq0 8124. Generalization of subeq0d 8217. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( ( A  -  B )  =  0  <->  A  =  B ) )
 
Theoremsubne0ad 8220 If the difference of two complex numbers is nonzero, they are unequal. Converse of subne0d 8218. Contrapositive of subeq0bd 8277. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  ( A  -  B )  =/=  0
 )   =>    |-  ( ph  ->  A  =/=  B )
 
Theoremneg11d 8221 If the difference between two numbers is zero, they are equal. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  -u A  =  -u B )   =>    |-  ( ph  ->  A  =  B )
 
Theoremnegdid 8222 Distribution of negative over addition. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  -u ( A  +  B )  =  ( -u A  +  -u B ) )
 
Theoremnegdi2d 8223 Distribution of negative over addition. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  -u ( A  +  B )  =  ( -u A  -  B ) )
 
Theoremnegsubdid 8224 Distribution of negative over subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  -u ( A  -  B )  =  ( -u A  +  B ) )
 
Theoremnegsubdi2d 8225 Distribution of negative over subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  -u ( A  -  B )  =  ( B  -  A ) )
 
Theoremneg2subd 8226 Relationship between subtraction and negative. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  (
 -u A  -  -u B )  =  ( B  -  A ) )
 
Theoremsubaddd 8227 Relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  -  B )  =  C  <->  ( B  +  C )  =  A ) )
 
Theoremsubadd2d 8228 Relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  -  B )  =  C  <->  ( C  +  B )  =  A ) )
 
Theoremaddsubassd 8229 Associative-type law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  B )  -  C )  =  ( A  +  ( B  -  C ) ) )
 
Theoremaddsubd 8230 Law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  B )  -  C )  =  ( ( A  -  C )  +  B ) )
 
Theoremsubadd23d 8231 Commutative/associative law for addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  -  B )  +  C )  =  ( A  +  ( C  -  B ) ) )
 
Theoremaddsub12d 8232 Commutative/associative law for addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  ( A  +  ( B  -  C ) )  =  ( B  +  ( A  -  C ) ) )
 
Theoremnpncand 8233 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  -  B )  +  ( B  -  C ) )  =  ( A  -  C ) )
 
Theoremnppcand 8234 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( ( A  -  B )  +  C )  +  B )  =  ( A  +  C ) )
 
Theoremnppcan2d 8235 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  -  ( B  +  C )
 )  +  C )  =  ( A  -  B ) )
 
Theoremnppcan3d 8236 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  -  B )  +  ( C  +  B ) )  =  ( A  +  C ) )
 
Theoremsubsubd 8237 Law for double subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  ( A  -  ( B  -  C ) )  =  ( ( A  -  B )  +  C ) )
 
Theoremsubsub2d 8238 Law for double subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  ( A  -  ( B  -  C ) )  =  ( A  +  ( C  -  B ) ) )
 
Theoremsubsub3d 8239 Law for double subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  ( A  -  ( B  -  C ) )  =  ( ( A  +  C )  -  B ) )
 
Theoremsubsub4d 8240 Law for double subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  -  B )  -  C )  =  ( A  -  ( B  +  C )
 ) )
 
Theoremsub32d 8241 Swap the second and third terms in a double subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  -  B )  -  C )  =  ( ( A  -  C )  -  B ) )
 
Theoremnnncand 8242 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  -  ( B  -  C ) )  -  C )  =  ( A  -  B ) )
 
Theoremnnncan1d 8243 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  -  B )  -  ( A  -  C ) )  =  ( C  -  B ) )
 
Theoremnnncan2d 8244 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  -  C )  -  ( B  -  C ) )  =  ( A  -  B ) )
 
Theoremnpncan3d 8245 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  -  B )  +  ( C  -  A ) )  =  ( C  -  B ) )
 
Theorempnpcand 8246 Cancellation law for mixed addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  B )  -  ( A  +  C ) )  =  ( B  -  C ) )
 
Theorempnpcan2d 8247 Cancellation law for mixed addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  C )  -  ( B  +  C ) )  =  ( A  -  B ) )
 
Theorempnncand 8248 Cancellation law for mixed addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  B )  -  ( A  -  C ) )  =  ( B  +  C ) )
 
Theoremppncand 8249 Cancellation law for mixed addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  B )  +  ( C  -  B ) )  =  ( A  +  C ) )
 
Theoremsubcand 8250 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  ( A  -  B )  =  ( A  -  C ) )   =>    |-  ( ph  ->  B  =  C )
 
Theoremsubcan2d 8251 Cancellation law for subtraction. (Contributed by Mario Carneiro, 22-Sep-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  ( A  -  C )  =  ( B  -  C ) )   =>    |-  ( ph  ->  A  =  B )
 
Theoremsubcanad 8252 Cancellation law for subtraction. Deduction form of subcan 8153. Generalization of subcand 8250. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  -  B )  =  ( A  -  C )  <->  B  =  C ) )
 
Theoremsubneintrd 8253 Introducing subtraction on both sides of a statement of inequality. Contrapositive of subcand 8250. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  B  =/=  C )   =>    |-  ( ph  ->  ( A  -  B )  =/=  ( A  -  C ) )
 
Theoremsubcan2ad 8254 Cancellation law for subtraction. Deduction form of subcan2 8123. Generalization of subcan2d 8251. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  -  C )  =  ( B  -  C )  <->  A  =  B ) )
 
Theoremsubneintr2d 8255 Introducing subtraction on both sides of a statement of inequality. Contrapositive of subcan2d 8251. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  A  =/=  B )   =>    |-  ( ph  ->  ( A  -  C )  =/=  ( B  -  C ) )
 
Theoremaddsub4d 8256 Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  B )  -  ( C  +  D ) )  =  ( ( A  -  C )  +  ( B  -  D ) ) )
 
Theoremsubadd4d 8257 Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   =>    |-  ( ph  ->  (
 ( A  -  B )  -  ( C  -  D ) )  =  ( ( A  +  D )  -  ( B  +  C )
 ) )
 
Theoremsub4d 8258 Rearrangement of 4 terms in a subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   =>    |-  ( ph  ->  (
 ( A  -  B )  -  ( C  -  D ) )  =  ( ( A  -  C )  -  ( B  -  D ) ) )
 
Theorem2addsubd 8259 Law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   =>    |-  ( ph  ->  (
 ( ( A  +  B )  +  C )  -  D )  =  ( ( ( A  +  C )  -  D )  +  B ) )
 
Theoremaddsubeq4d 8260 Relation between sums and differences. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  B )  =  ( C  +  D )  <->  ( C  -  A )  =  ( B  -  D ) ) )
 
Theoremsubeqxfrd 8261 Transfer two terms of a subtraction in an equality. (Contributed by Thierry Arnoux, 2-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   &    |-  ( ph  ->  ( A  -  B )  =  ( C  -  D ) )   =>    |-  ( ph  ->  ( A  -  C )  =  ( B  -  D ) )
 
Theoremmvlraddd 8262 Move LHS right addition to RHS. (Contributed by David A. Wheeler, 15-Oct-2018.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  ( A  +  B )  =  C )   =>    |-  ( ph  ->  A  =  ( C  -  B ) )
 
Theoremmvlladdd 8263 Move LHS left addition to RHS. (Contributed by David A. Wheeler, 15-Oct-2018.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  ( A  +  B )  =  C )   =>    |-  ( ph  ->  B  =  ( C  -  A ) )
 
Theoremmvrraddd 8264 Move RHS right addition to LHS. (Contributed by David A. Wheeler, 15-Oct-2018.)
 |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  A  =  ( B  +  C ) )   =>    |-  ( ph  ->  ( A  -  C )  =  B )
 
Theoremmvrladdd 8265 Move RHS left addition to LHS. (Contributed by David A. Wheeler, 11-Oct-2018.)
 |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  A  =  ( B  +  C ) )   =>    |-  ( ph  ->  ( A  -  B )  =  C )
 
Theoremassraddsubd 8266 Associate RHS addition-subtraction. (Contributed by David A. Wheeler, 15-Oct-2018.)
 |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   &    |-  ( ph  ->  A  =  ( ( B  +  C )  -  D ) )   =>    |-  ( ph  ->  A  =  ( B  +  ( C  -  D ) ) )
 
Theoremsubaddeqd 8267 Transfer two terms of a subtraction to an addition in an equality. (Contributed by Thierry Arnoux, 2-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   &    |-  ( ph  ->  ( A  +  B )  =  ( C  +  D ) )   =>    |-  ( ph  ->  ( A  -  D )  =  ( C  -  B ) )
 
Theoremaddlsub 8268 Left-subtraction: Subtraction of the left summand from the result of an addition. (Contributed by BJ, 6-Jun-2019.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  B )  =  C  <->  A  =  ( C  -  B ) ) )
 
Theoremaddrsub 8269 Right-subtraction: Subtraction of the right summand from the result of an addition. (Contributed by BJ, 6-Jun-2019.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  B )  =  C  <->  B  =  ( C  -  A ) ) )
 
Theoremsubexsub 8270 A subtraction law: Exchanging the subtrahend and the result of the subtraction. (Contributed by BJ, 6-Jun-2019.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  ( A  =  ( C  -  B )  <->  B  =  ( C  -  A ) ) )
 
Theoremaddid0 8271 If adding a number to a another number yields the other number, the added number must be  0. This shows that  0 is the unique (right) identity of the complex numbers. (Contributed by AV, 17-Jan-2021.)
 |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  ( ( X  +  Y )  =  X  <->  Y  =  0
 ) )
 
Theoremaddn0nid 8272 Adding a nonzero number to a complex number does not yield the complex number. (Contributed by AV, 17-Jan-2021.)
 |-  ( ( X  e.  CC  /\  Y  e.  CC  /\  Y  =/=  0 ) 
 ->  ( X  +  Y )  =/=  X )
 
Theorempnpncand 8273 Addition/subtraction cancellation law. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  ( B  -  C ) )  +  ( C  -  B ) )  =  A )
 
Theoremsubeqrev 8274 Reverse the order of subtraction in an equality. (Contributed by Scott Fenton, 8-Jul-2013.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  -  B )  =  ( C  -  D )  <->  ( B  -  A )  =  ( D  -  C ) ) )
 
Theorempncan1 8275 Cancellation law for addition and subtraction with 1. (Contributed by Alexander van der Vekens, 3-Oct-2018.)
 |-  ( A  e.  CC  ->  ( ( A  +  1 )  -  1
 )  =  A )
 
Theoremnpcan1 8276 Cancellation law for subtraction and addition with 1. (Contributed by Alexander van der Vekens, 5-Oct-2018.)
 |-  ( A  e.  CC  ->  ( ( A  -  1 )  +  1
 )  =  A )
 
Theoremsubeq0bd 8277 If two complex numbers are equal, their difference is zero. Consequence of subeq0ad 8219. Converse of subeq0d 8217. Contrapositive of subne0ad 8220. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A  -  B )  =  0 )
 
Theoremrenegcld 8278 Closure law for negative of reals. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  -u A  e.  RR )
 
Theoremresubcld 8279 Closure law for subtraction of reals. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( A  -  B )  e.  RR )
 
Theoremnegf1o 8280* Negation is an isomorphism of a subset of the real numbers to the negated elements of the subset. (Contributed by AV, 9-Aug-2020.)
 |-  F  =  ( x  e.  A  |->  -u x )   =>    |-  ( A  C_  RR  ->  F : A -1-1-onto-> { n  e.  RR  |  -u n  e.  A } )
 
4.3.3  Multiplication
 
Theoremkcnktkm1cn 8281 k times k minus 1 is a complex number if k is a complex number. (Contributed by Alexander van der Vekens, 11-Mar-2018.)
 |-  ( K  e.  CC  ->  ( K  x.  ( K  -  1 ) )  e.  CC )
 
Theoremmuladd 8282 Product of two sums. (Contributed by NM, 14-Jan-2006.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  +  B )  x.  ( C  +  D )
 )  =  ( ( ( A  x.  C )  +  ( D  x.  B ) )  +  ( ( A  x.  D )  +  ( C  x.  B ) ) ) )
 
Theoremsubdi 8283 Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by NM, 18-Nov-2004.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  -  C ) )  =  ( ( A  x.  B )  -  ( A  x.  C ) ) )
 
Theoremsubdir 8284 Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by NM, 30-Dec-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  x.  C )  =  ( ( A  x.  C )  -  ( B  x.  C ) ) )
 
Theoremmul02 8285 Multiplication by  0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 10-Aug-1999.)
 |-  ( A  e.  CC  ->  ( 0  x.  A )  =  0 )
 
Theoremmul02lem2 8286 Zero times a real is zero. Although we prove it as a corollary of mul02 8285, the name is for consistency with the Metamath Proof Explorer which proves it before mul02 8285. (Contributed by Scott Fenton, 3-Jan-2013.)
 |-  ( A  e.  RR  ->  ( 0  x.  A )  =  0 )
 
Theoremmul01 8287 Multiplication by  0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 15-May-1999.) (Revised by Scott Fenton, 3-Jan-2013.)
 |-  ( A  e.  CC  ->  ( A  x.  0
 )  =  0 )
 
Theoremmul02i 8288 Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 23-Nov-1994.)
 |-  A  e.  CC   =>    |-  ( 0  x.  A )  =  0
 
Theoremmul01i 8289 Multiplication by  0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
 |-  A  e.  CC   =>    |-  ( A  x.  0 )  =  0
 
Theoremmul02d 8290 Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  (
 0  x.  A )  =  0 )
 
Theoremmul01d 8291 Multiplication by  0. Theorem I.6 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( A  x.  0 )  =  0 )
 
Theoremine0 8292 The imaginary unit  _i is not zero. (Contributed by NM, 6-May-1999.)
 |-  _i  =/=  0
 
Theoremmulneg1 8293 Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 14-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u A  x.  B )  =  -u ( A  x.  B ) )
 
Theoremmulneg2 8294 The product with a negative is the negative of the product. (Contributed by NM, 30-Jul-2004.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  -u B )  =  -u ( A  x.  B ) )
 
Theoremmulneg12 8295 Swap the negative sign in a product. (Contributed by NM, 30-Jul-2004.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u A  x.  B )  =  ( A  x.  -u B ) )
 
Theoremmul2neg 8296 Product of two negatives. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 30-Jul-2004.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u A  x.  -u B )  =  ( A  x.  B ) )
 
Theoremsubmul2 8297 Convert a subtraction to addition using multiplication by a negative. (Contributed by NM, 2-Feb-2007.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  x.  C ) )  =  ( A  +  ( B  x.  -u C ) ) )
 
Theoremmulm1 8298 Product with minus one is negative. (Contributed by NM, 16-Nov-1999.)
 |-  ( A  e.  CC  ->  ( -u 1  x.  A )  =  -u A )
 
Theoremmulsub 8299 Product of two differences. (Contributed by NM, 14-Jan-2006.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  -  B )  x.  ( C  -  D ) )  =  ( ( ( A  x.  C )  +  ( D  x.  B ) )  -  ( ( A  x.  D )  +  ( C  x.  B ) ) ) )
 
Theoremmulsub2 8300 Swap the order of subtraction in a multiplication. (Contributed by Scott Fenton, 24-Jun-2013.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  -  B )  x.  ( C  -  D ) )  =  ( ( B  -  A )  x.  ( D  -  C ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >