| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fprodge1 | Unicode version | ||
| Description: If all of the terms of a
finite product are greater than or equal to
|
| Ref | Expression |
|---|---|
| fprodge1.ph |
|
| fprodge1.a |
|
| fprodge1.b |
|
| fprodge1.ge |
|
| Ref | Expression |
|---|---|
| fprodge1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1xr 8090 |
. 2
| |
| 2 | pnfxr 8084 |
. 2
| |
| 3 | fprodge1.ph |
. . 3
| |
| 4 | 1re 8030 |
. . . . . 6
| |
| 5 | icossre 10034 |
. . . . . 6
| |
| 6 | 4, 2, 5 | mp2an 426 |
. . . . 5
|
| 7 | ax-resscn 7976 |
. . . . 5
| |
| 8 | 6, 7 | sstri 3193 |
. . . 4
|
| 9 | 8 | a1i 9 |
. . 3
|
| 10 | 1 | a1i 9 |
. . . . 5
|
| 11 | 2 | a1i 9 |
. . . . 5
|
| 12 | 6 | sseli 3180 |
. . . . . . . 8
|
| 13 | 12 | adantr 276 |
. . . . . . 7
|
| 14 | 6 | sseli 3180 |
. . . . . . . 8
|
| 15 | 14 | adantl 277 |
. . . . . . 7
|
| 16 | 13, 15 | remulcld 8062 |
. . . . . 6
|
| 17 | 16 | rexrd 8081 |
. . . . 5
|
| 18 | 1t1e1 9148 |
. . . . . 6
| |
| 19 | 4 | a1i 9 |
. . . . . . 7
|
| 20 | 0le1 8513 |
. . . . . . . 8
| |
| 21 | 20 | a1i 9 |
. . . . . . 7
|
| 22 | icogelb 10360 |
. . . . . . . . 9
| |
| 23 | 1, 2, 22 | mp3an12 1338 |
. . . . . . . 8
|
| 24 | 23 | adantr 276 |
. . . . . . 7
|
| 25 | icogelb 10360 |
. . . . . . . . 9
| |
| 26 | 1, 2, 25 | mp3an12 1338 |
. . . . . . . 8
|
| 27 | 26 | adantl 277 |
. . . . . . 7
|
| 28 | 19, 13, 19, 15, 21, 21, 24, 27 | lemul12ad 8974 |
. . . . . 6
|
| 29 | 18, 28 | eqbrtrrid 4070 |
. . . . 5
|
| 30 | 16 | ltpnfd 9861 |
. . . . 5
|
| 31 | 10, 11, 17, 29, 30 | elicod 10359 |
. . . 4
|
| 32 | 31 | adantl 277 |
. . 3
|
| 33 | fprodge1.a |
. . 3
| |
| 34 | 1 | a1i 9 |
. . . 4
|
| 35 | 2 | a1i 9 |
. . . 4
|
| 36 | fprodge1.b |
. . . . 5
| |
| 37 | 36 | rexrd 8081 |
. . . 4
|
| 38 | fprodge1.ge |
. . . 4
| |
| 39 | 36 | ltpnfd 9861 |
. . . 4
|
| 40 | 34, 35, 37, 38, 39 | elicod 10359 |
. . 3
|
| 41 | 1le1 8604 |
. . . . 5
| |
| 42 | ltpnf 9860 |
. . . . . 6
| |
| 43 | 4, 42 | ax-mp 5 |
. . . . 5
|
| 44 | elico2 10017 |
. . . . . 6
| |
| 45 | 4, 2, 44 | mp2an 426 |
. . . . 5
|
| 46 | 4, 41, 43, 45 | mpbir3an 1181 |
. . . 4
|
| 47 | 46 | a1i 9 |
. . 3
|
| 48 | 3, 9, 32, 33, 40, 47 | fprodcllemf 11783 |
. 2
|
| 49 | icogelb 10360 |
. 2
| |
| 50 | 1, 2, 48, 49 | mp3an12i 1352 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7975 ax-resscn 7976 ax-1cn 7977 ax-1re 7978 ax-icn 7979 ax-addcl 7980 ax-addrcl 7981 ax-mulcl 7982 ax-mulrcl 7983 ax-addcom 7984 ax-mulcom 7985 ax-addass 7986 ax-mulass 7987 ax-distr 7988 ax-i2m1 7989 ax-0lt1 7990 ax-1rid 7991 ax-0id 7992 ax-rnegex 7993 ax-precex 7994 ax-cnre 7995 ax-pre-ltirr 7996 ax-pre-ltwlin 7997 ax-pre-lttrn 7998 ax-pre-apti 7999 ax-pre-ltadd 8000 ax-pre-mulgt0 8001 ax-pre-mulext 8002 ax-arch 8003 ax-caucvg 8004 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6202 df-2nd 6203 df-recs 6367 df-irdg 6432 df-frec 6453 df-1o 6478 df-oadd 6482 df-er 6596 df-en 6804 df-dom 6805 df-fin 6806 df-pnf 8068 df-mnf 8069 df-xr 8070 df-ltxr 8071 df-le 8072 df-sub 8204 df-neg 8205 df-reap 8607 df-ap 8614 df-div 8705 df-inn 8996 df-2 9054 df-3 9055 df-4 9056 df-n0 9255 df-z 9332 df-uz 9607 df-q 9699 df-rp 9734 df-ico 9974 df-fz 10089 df-fzo 10223 df-seqfrec 10545 df-exp 10636 df-ihash 10873 df-cj 11012 df-re 11013 df-im 11014 df-rsqrt 11168 df-abs 11169 df-clim 11449 df-proddc 11721 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |