ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodge1 Unicode version

Theorem fprodge1 11782
Description: If all of the terms of a finite product are greater than or equal to  1, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodge1.ph  |-  F/ k
ph
fprodge1.a  |-  ( ph  ->  A  e.  Fin )
fprodge1.b  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
fprodge1.ge  |-  ( (
ph  /\  k  e.  A )  ->  1  <_  B )
Assertion
Ref Expression
fprodge1  |-  ( ph  ->  1  <_  prod_ k  e.  A  B )
Distinct variable group:    A, k
Allowed substitution hints:    ph( k)    B( k)

Proof of Theorem fprodge1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1xr 8078 . 2  |-  1  e.  RR*
2 pnfxr 8072 . 2  |- +oo  e.  RR*
3 fprodge1.ph . . 3  |-  F/ k
ph
4 1re 8018 . . . . . 6  |-  1  e.  RR
5 icossre 10020 . . . . . 6  |-  ( ( 1  e.  RR  /\ +oo  e.  RR* )  ->  (
1 [,) +oo )  C_  RR )
64, 2, 5mp2an 426 . . . . 5  |-  ( 1 [,) +oo )  C_  RR
7 ax-resscn 7964 . . . . 5  |-  RR  C_  CC
86, 7sstri 3188 . . . 4  |-  ( 1 [,) +oo )  C_  CC
98a1i 9 . . 3  |-  ( ph  ->  ( 1 [,) +oo )  C_  CC )
101a1i 9 . . . . 5  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  1  e.  RR* )
112a1i 9 . . . . 5  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  -> +oo  e.  RR* )
126sseli 3175 . . . . . . . 8  |-  ( x  e.  ( 1 [,) +oo )  ->  x  e.  RR )
1312adantr 276 . . . . . . 7  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  x  e.  RR )
146sseli 3175 . . . . . . . 8  |-  ( y  e.  ( 1 [,) +oo )  ->  y  e.  RR )
1514adantl 277 . . . . . . 7  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  y  e.  RR )
1613, 15remulcld 8050 . . . . . 6  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  ( x  x.  y )  e.  RR )
1716rexrd 8069 . . . . 5  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  ( x  x.  y )  e.  RR* )
18 1t1e1 9134 . . . . . 6  |-  ( 1  x.  1 )  =  1
194a1i 9 . . . . . . 7  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  1  e.  RR )
20 0le1 8500 . . . . . . . 8  |-  0  <_  1
2120a1i 9 . . . . . . 7  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  0  <_  1
)
22 icogelb 10334 . . . . . . . . 9  |-  ( ( 1  e.  RR*  /\ +oo  e.  RR*  /\  x  e.  ( 1 [,) +oo ) )  ->  1  <_  x )
231, 2, 22mp3an12 1338 . . . . . . . 8  |-  ( x  e.  ( 1 [,) +oo )  ->  1  <_  x )
2423adantr 276 . . . . . . 7  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  1  <_  x
)
25 icogelb 10334 . . . . . . . . 9  |-  ( ( 1  e.  RR*  /\ +oo  e.  RR*  /\  y  e.  ( 1 [,) +oo ) )  ->  1  <_  y )
261, 2, 25mp3an12 1338 . . . . . . . 8  |-  ( y  e.  ( 1 [,) +oo )  ->  1  <_ 
y )
2726adantl 277 . . . . . . 7  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  1  <_  y
)
2819, 13, 19, 15, 21, 21, 24, 27lemul12ad 8961 . . . . . 6  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  ( 1  x.  1 )  <_  (
x  x.  y ) )
2918, 28eqbrtrrid 4065 . . . . 5  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  1  <_  (
x  x.  y ) )
3016ltpnfd 9847 . . . . 5  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  ( x  x.  y )  < +oo )
3110, 11, 17, 29, 30elicod 10333 . . . 4  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  ( x  x.  y )  e.  ( 1 [,) +oo )
)
3231adantl 277 . . 3  |-  ( (
ph  /\  ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo )
) )  ->  (
x  x.  y )  e.  ( 1 [,) +oo ) )
33 fprodge1.a . . 3  |-  ( ph  ->  A  e.  Fin )
341a1i 9 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  1  e.  RR* )
352a1i 9 . . . 4  |-  ( (
ph  /\  k  e.  A )  -> +oo  e.  RR* )
36 fprodge1.b . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
3736rexrd 8069 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR* )
38 fprodge1.ge . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  1  <_  B )
3936ltpnfd 9847 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  B  < +oo )
4034, 35, 37, 38, 39elicod 10333 . . 3  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  ( 1 [,) +oo ) )
41 1le1 8591 . . . . 5  |-  1  <_  1
42 ltpnf 9846 . . . . . 6  |-  ( 1  e.  RR  ->  1  < +oo )
434, 42ax-mp 5 . . . . 5  |-  1  < +oo
44 elico2 10003 . . . . . 6  |-  ( ( 1  e.  RR  /\ +oo  e.  RR* )  ->  (
1  e.  ( 1 [,) +oo )  <->  ( 1  e.  RR  /\  1  <_  1  /\  1  < +oo ) ) )
454, 2, 44mp2an 426 . . . . 5  |-  ( 1  e.  ( 1 [,) +oo )  <->  ( 1  e.  RR  /\  1  <_ 
1  /\  1  < +oo ) )
464, 41, 43, 45mpbir3an 1181 . . . 4  |-  1  e.  ( 1 [,) +oo )
4746a1i 9 . . 3  |-  ( ph  ->  1  e.  ( 1 [,) +oo ) )
483, 9, 32, 33, 40, 47fprodcllemf 11756 . 2  |-  ( ph  ->  prod_ k  e.  A  B  e.  ( 1 [,) +oo ) )
49 icogelb 10334 . 2  |-  ( ( 1  e.  RR*  /\ +oo  e.  RR*  /\  prod_ k  e.  A  B  e.  ( 1 [,) +oo ) )  ->  1  <_  prod_ k  e.  A  B )
501, 2, 48, 49mp3an12i 1352 1  |-  ( ph  ->  1  <_  prod_ k  e.  A  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980   F/wnf 1471    e. wcel 2164    C_ wss 3153   class class class wbr 4029  (class class class)co 5918   Fincfn 6794   CCcc 7870   RRcr 7871   0cc0 7872   1c1 7873    x. cmul 7877   +oocpnf 8051   RR*cxr 8053    < clt 8054    <_ cle 8055   [,)cico 9956   prod_cprod 11693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-ico 9960  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-proddc 11694
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator