ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodge1 Unicode version

Theorem fprodge1 11602
Description: If all of the terms of a finite product are greater than or equal to  1, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodge1.ph  |-  F/ k
ph
fprodge1.a  |-  ( ph  ->  A  e.  Fin )
fprodge1.b  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
fprodge1.ge  |-  ( (
ph  /\  k  e.  A )  ->  1  <_  B )
Assertion
Ref Expression
fprodge1  |-  ( ph  ->  1  <_  prod_ k  e.  A  B )
Distinct variable group:    A, k
Allowed substitution hints:    ph( k)    B( k)

Proof of Theorem fprodge1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1xr 7978 . 2  |-  1  e.  RR*
2 pnfxr 7972 . 2  |- +oo  e.  RR*
3 fprodge1.ph . . 3  |-  F/ k
ph
4 1re 7919 . . . . . 6  |-  1  e.  RR
5 icossre 9911 . . . . . 6  |-  ( ( 1  e.  RR  /\ +oo  e.  RR* )  ->  (
1 [,) +oo )  C_  RR )
64, 2, 5mp2an 424 . . . . 5  |-  ( 1 [,) +oo )  C_  RR
7 ax-resscn 7866 . . . . 5  |-  RR  C_  CC
86, 7sstri 3156 . . . 4  |-  ( 1 [,) +oo )  C_  CC
98a1i 9 . . 3  |-  ( ph  ->  ( 1 [,) +oo )  C_  CC )
101a1i 9 . . . . 5  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  1  e.  RR* )
112a1i 9 . . . . 5  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  -> +oo  e.  RR* )
126sseli 3143 . . . . . . . 8  |-  ( x  e.  ( 1 [,) +oo )  ->  x  e.  RR )
1312adantr 274 . . . . . . 7  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  x  e.  RR )
146sseli 3143 . . . . . . . 8  |-  ( y  e.  ( 1 [,) +oo )  ->  y  e.  RR )
1514adantl 275 . . . . . . 7  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  y  e.  RR )
1613, 15remulcld 7950 . . . . . 6  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  ( x  x.  y )  e.  RR )
1716rexrd 7969 . . . . 5  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  ( x  x.  y )  e.  RR* )
18 1t1e1 9030 . . . . . 6  |-  ( 1  x.  1 )  =  1
194a1i 9 . . . . . . 7  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  1  e.  RR )
20 0le1 8400 . . . . . . . 8  |-  0  <_  1
2120a1i 9 . . . . . . 7  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  0  <_  1
)
22 icogelb 10222 . . . . . . . . 9  |-  ( ( 1  e.  RR*  /\ +oo  e.  RR*  /\  x  e.  ( 1 [,) +oo ) )  ->  1  <_  x )
231, 2, 22mp3an12 1322 . . . . . . . 8  |-  ( x  e.  ( 1 [,) +oo )  ->  1  <_  x )
2423adantr 274 . . . . . . 7  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  1  <_  x
)
25 icogelb 10222 . . . . . . . . 9  |-  ( ( 1  e.  RR*  /\ +oo  e.  RR*  /\  y  e.  ( 1 [,) +oo ) )  ->  1  <_  y )
261, 2, 25mp3an12 1322 . . . . . . . 8  |-  ( y  e.  ( 1 [,) +oo )  ->  1  <_ 
y )
2726adantl 275 . . . . . . 7  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  1  <_  y
)
2819, 13, 19, 15, 21, 21, 24, 27lemul12ad 8858 . . . . . 6  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  ( 1  x.  1 )  <_  (
x  x.  y ) )
2918, 28eqbrtrrid 4025 . . . . 5  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  1  <_  (
x  x.  y ) )
3016ltpnfd 9738 . . . . 5  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  ( x  x.  y )  < +oo )
3110, 11, 17, 29, 30elicod 10221 . . . 4  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  ( x  x.  y )  e.  ( 1 [,) +oo )
)
3231adantl 275 . . 3  |-  ( (
ph  /\  ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo )
) )  ->  (
x  x.  y )  e.  ( 1 [,) +oo ) )
33 fprodge1.a . . 3  |-  ( ph  ->  A  e.  Fin )
341a1i 9 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  1  e.  RR* )
352a1i 9 . . . 4  |-  ( (
ph  /\  k  e.  A )  -> +oo  e.  RR* )
36 fprodge1.b . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
3736rexrd 7969 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR* )
38 fprodge1.ge . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  1  <_  B )
3936ltpnfd 9738 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  B  < +oo )
4034, 35, 37, 38, 39elicod 10221 . . 3  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  ( 1 [,) +oo ) )
41 1le1 8491 . . . . 5  |-  1  <_  1
42 ltpnf 9737 . . . . . 6  |-  ( 1  e.  RR  ->  1  < +oo )
434, 42ax-mp 5 . . . . 5  |-  1  < +oo
44 elico2 9894 . . . . . 6  |-  ( ( 1  e.  RR  /\ +oo  e.  RR* )  ->  (
1  e.  ( 1 [,) +oo )  <->  ( 1  e.  RR  /\  1  <_  1  /\  1  < +oo ) ) )
454, 2, 44mp2an 424 . . . . 5  |-  ( 1  e.  ( 1 [,) +oo )  <->  ( 1  e.  RR  /\  1  <_ 
1  /\  1  < +oo ) )
464, 41, 43, 45mpbir3an 1174 . . . 4  |-  1  e.  ( 1 [,) +oo )
4746a1i 9 . . 3  |-  ( ph  ->  1  e.  ( 1 [,) +oo ) )
483, 9, 32, 33, 40, 47fprodcllemf 11576 . 2  |-  ( ph  ->  prod_ k  e.  A  B  e.  ( 1 [,) +oo ) )
49 icogelb 10222 . 2  |-  ( ( 1  e.  RR*  /\ +oo  e.  RR*  /\  prod_ k  e.  A  B  e.  ( 1 [,) +oo ) )  ->  1  <_  prod_ k  e.  A  B )
501, 2, 48, 49mp3an12i 1336 1  |-  ( ph  ->  1  <_  prod_ k  e.  A  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973   F/wnf 1453    e. wcel 2141    C_ wss 3121   class class class wbr 3989  (class class class)co 5853   Fincfn 6718   CCcc 7772   RRcr 7773   0cc0 7774   1c1 7775    x. cmul 7779   +oocpnf 7951   RR*cxr 7953    < clt 7954    <_ cle 7955   [,)cico 9847   prod_cprod 11513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-ico 9851  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-proddc 11514
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator