ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodge1 Unicode version

Theorem fprodge1 12065
Description: If all of the terms of a finite product are greater than or equal to  1, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodge1.ph  |-  F/ k
ph
fprodge1.a  |-  ( ph  ->  A  e.  Fin )
fprodge1.b  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
fprodge1.ge  |-  ( (
ph  /\  k  e.  A )  ->  1  <_  B )
Assertion
Ref Expression
fprodge1  |-  ( ph  ->  1  <_  prod_ k  e.  A  B )
Distinct variable group:    A, k
Allowed substitution hints:    ph( k)    B( k)

Proof of Theorem fprodge1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1xr 8166 . 2  |-  1  e.  RR*
2 pnfxr 8160 . 2  |- +oo  e.  RR*
3 fprodge1.ph . . 3  |-  F/ k
ph
4 1re 8106 . . . . . 6  |-  1  e.  RR
5 icossre 10111 . . . . . 6  |-  ( ( 1  e.  RR  /\ +oo  e.  RR* )  ->  (
1 [,) +oo )  C_  RR )
64, 2, 5mp2an 426 . . . . 5  |-  ( 1 [,) +oo )  C_  RR
7 ax-resscn 8052 . . . . 5  |-  RR  C_  CC
86, 7sstri 3210 . . . 4  |-  ( 1 [,) +oo )  C_  CC
98a1i 9 . . 3  |-  ( ph  ->  ( 1 [,) +oo )  C_  CC )
101a1i 9 . . . . 5  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  1  e.  RR* )
112a1i 9 . . . . 5  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  -> +oo  e.  RR* )
126sseli 3197 . . . . . . . 8  |-  ( x  e.  ( 1 [,) +oo )  ->  x  e.  RR )
1312adantr 276 . . . . . . 7  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  x  e.  RR )
146sseli 3197 . . . . . . . 8  |-  ( y  e.  ( 1 [,) +oo )  ->  y  e.  RR )
1514adantl 277 . . . . . . 7  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  y  e.  RR )
1613, 15remulcld 8138 . . . . . 6  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  ( x  x.  y )  e.  RR )
1716rexrd 8157 . . . . 5  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  ( x  x.  y )  e.  RR* )
18 1t1e1 9224 . . . . . 6  |-  ( 1  x.  1 )  =  1
194a1i 9 . . . . . . 7  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  1  e.  RR )
20 0le1 8589 . . . . . . . 8  |-  0  <_  1
2120a1i 9 . . . . . . 7  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  0  <_  1
)
22 icogelb 10445 . . . . . . . . 9  |-  ( ( 1  e.  RR*  /\ +oo  e.  RR*  /\  x  e.  ( 1 [,) +oo ) )  ->  1  <_  x )
231, 2, 22mp3an12 1340 . . . . . . . 8  |-  ( x  e.  ( 1 [,) +oo )  ->  1  <_  x )
2423adantr 276 . . . . . . 7  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  1  <_  x
)
25 icogelb 10445 . . . . . . . . 9  |-  ( ( 1  e.  RR*  /\ +oo  e.  RR*  /\  y  e.  ( 1 [,) +oo ) )  ->  1  <_  y )
261, 2, 25mp3an12 1340 . . . . . . . 8  |-  ( y  e.  ( 1 [,) +oo )  ->  1  <_ 
y )
2726adantl 277 . . . . . . 7  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  1  <_  y
)
2819, 13, 19, 15, 21, 21, 24, 27lemul12ad 9050 . . . . . 6  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  ( 1  x.  1 )  <_  (
x  x.  y ) )
2918, 28eqbrtrrid 4095 . . . . 5  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  1  <_  (
x  x.  y ) )
3016ltpnfd 9938 . . . . 5  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  ( x  x.  y )  < +oo )
3110, 11, 17, 29, 30elicod 10444 . . . 4  |-  ( ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo ) )  ->  ( x  x.  y )  e.  ( 1 [,) +oo )
)
3231adantl 277 . . 3  |-  ( (
ph  /\  ( x  e.  ( 1 [,) +oo )  /\  y  e.  ( 1 [,) +oo )
) )  ->  (
x  x.  y )  e.  ( 1 [,) +oo ) )
33 fprodge1.a . . 3  |-  ( ph  ->  A  e.  Fin )
341a1i 9 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  1  e.  RR* )
352a1i 9 . . . 4  |-  ( (
ph  /\  k  e.  A )  -> +oo  e.  RR* )
36 fprodge1.b . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
3736rexrd 8157 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR* )
38 fprodge1.ge . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  1  <_  B )
3936ltpnfd 9938 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  B  < +oo )
4034, 35, 37, 38, 39elicod 10444 . . 3  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  ( 1 [,) +oo ) )
41 1le1 8680 . . . . 5  |-  1  <_  1
42 ltpnf 9937 . . . . . 6  |-  ( 1  e.  RR  ->  1  < +oo )
434, 42ax-mp 5 . . . . 5  |-  1  < +oo
44 elico2 10094 . . . . . 6  |-  ( ( 1  e.  RR  /\ +oo  e.  RR* )  ->  (
1  e.  ( 1 [,) +oo )  <->  ( 1  e.  RR  /\  1  <_  1  /\  1  < +oo ) ) )
454, 2, 44mp2an 426 . . . . 5  |-  ( 1  e.  ( 1 [,) +oo )  <->  ( 1  e.  RR  /\  1  <_ 
1  /\  1  < +oo ) )
464, 41, 43, 45mpbir3an 1182 . . . 4  |-  1  e.  ( 1 [,) +oo )
4746a1i 9 . . 3  |-  ( ph  ->  1  e.  ( 1 [,) +oo ) )
483, 9, 32, 33, 40, 47fprodcllemf 12039 . 2  |-  ( ph  ->  prod_ k  e.  A  B  e.  ( 1 [,) +oo ) )
49 icogelb 10445 . 2  |-  ( ( 1  e.  RR*  /\ +oo  e.  RR*  /\  prod_ k  e.  A  B  e.  ( 1 [,) +oo ) )  ->  1  <_  prod_ k  e.  A  B )
501, 2, 48, 49mp3an12i 1354 1  |-  ( ph  ->  1  <_  prod_ k  e.  A  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981   F/wnf 1484    e. wcel 2178    C_ wss 3174   class class class wbr 4059  (class class class)co 5967   Fincfn 6850   CCcc 7958   RRcr 7959   0cc0 7960   1c1 7961    x. cmul 7965   +oocpnf 8139   RR*cxr 8141    < clt 8142    <_ cle 8143   [,)cico 10047   prod_cprod 11976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-ico 10051  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-ihash 10958  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-proddc 11977
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator