| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexri | Unicode version | ||
| Description: A standard real is an extended real (inference form.) (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| rexri.1 |
|
| Ref | Expression |
|---|---|
| rexri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexri.1 |
. 2
| |
| 2 | rexr 8117 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-xr 8110 |
| This theorem is referenced by: 1xr 8130 cos12dec 12050 halfleoddlt 12176 reeff1oleme 15215 reeff1o 15216 sin0pilem2 15225 neghalfpirx 15237 sincosq1sgn 15269 sincosq2sgn 15270 sincosq4sgn 15272 sinq12gt0 15273 cosq14gt0 15275 cosq23lt0 15276 coseq0q4123 15277 coseq00topi 15278 coseq0negpitopi 15279 cosordlem 15292 cosq34lt1 15293 cos02pilt1 15294 cos0pilt1 15295 ioocosf1o 15297 negpitopissre 15298 iooref1o 15935 taupi 15974 |
| Copyright terms: Public domain | W3C validator |