ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexri Unicode version

Theorem rexri 7956
Description: A standard real is an extended real (inference form.) (Contributed by David Moews, 28-Feb-2017.)
Hypothesis
Ref Expression
rexri.1  |-  A  e.  RR
Assertion
Ref Expression
rexri  |-  A  e. 
RR*

Proof of Theorem rexri
StepHypRef Expression
1 rexri.1 . 2  |-  A  e.  RR
2 rexr 7944 . 2  |-  ( A  e.  RR  ->  A  e.  RR* )
31, 2ax-mp 5 1  |-  A  e. 
RR*
Colors of variables: wff set class
Syntax hints:    e. wcel 2136   RRcr 7752   RR*cxr 7932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-xr 7937
This theorem is referenced by:  1xr  7957  cos12dec  11708  halfleoddlt  11831  reeff1oleme  13333  reeff1o  13334  sin0pilem2  13343  neghalfpirx  13355  sincosq1sgn  13387  sincosq2sgn  13388  sincosq4sgn  13390  sinq12gt0  13391  cosq14gt0  13393  cosq23lt0  13394  coseq0q4123  13395  coseq00topi  13396  coseq0negpitopi  13397  cosordlem  13410  cosq34lt1  13411  cos02pilt1  13412  cos0pilt1  13413  ioocosf1o  13415  negpitopissre  13416  iooref1o  13913  taupi  13949
  Copyright terms: Public domain W3C validator