| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexri | Unicode version | ||
| Description: A standard real is an extended real (inference form.) (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| rexri.1 |
|
| Ref | Expression |
|---|---|
| rexri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexri.1 |
. 2
| |
| 2 | rexr 8089 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-xr 8082 |
| This theorem is referenced by: 1xr 8102 cos12dec 11950 halfleoddlt 12076 reeff1oleme 15092 reeff1o 15093 sin0pilem2 15102 neghalfpirx 15114 sincosq1sgn 15146 sincosq2sgn 15147 sincosq4sgn 15149 sinq12gt0 15150 cosq14gt0 15152 cosq23lt0 15153 coseq0q4123 15154 coseq00topi 15155 coseq0negpitopi 15156 cosordlem 15169 cosq34lt1 15170 cos02pilt1 15171 cos0pilt1 15172 ioocosf1o 15174 negpitopissre 15175 iooref1o 15765 taupi 15804 |
| Copyright terms: Public domain | W3C validator |