| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexri | Unicode version | ||
| Description: A standard real is an extended real (inference form.) (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| rexri.1 |
|
| Ref | Expression |
|---|---|
| rexri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexri.1 |
. 2
| |
| 2 | rexr 8188 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-xr 8181 |
| This theorem is referenced by: 1xr 8201 cos12dec 12274 halfleoddlt 12400 reeff1oleme 15440 reeff1o 15441 sin0pilem2 15450 neghalfpirx 15462 sincosq1sgn 15494 sincosq2sgn 15495 sincosq4sgn 15497 sinq12gt0 15498 cosq14gt0 15500 cosq23lt0 15501 coseq0q4123 15502 coseq00topi 15503 coseq0negpitopi 15504 cosordlem 15517 cosq34lt1 15518 cos02pilt1 15519 cos0pilt1 15520 ioocosf1o 15522 negpitopissre 15523 iooref1o 16361 taupi 16400 |
| Copyright terms: Public domain | W3C validator |