| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexri | Unicode version | ||
| Description: A standard real is an extended real (inference form.) (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| rexri.1 |
|
| Ref | Expression |
|---|---|
| rexri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexri.1 |
. 2
| |
| 2 | rexr 8153 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-xr 8146 |
| This theorem is referenced by: 1xr 8166 cos12dec 12194 halfleoddlt 12320 reeff1oleme 15359 reeff1o 15360 sin0pilem2 15369 neghalfpirx 15381 sincosq1sgn 15413 sincosq2sgn 15414 sincosq4sgn 15416 sinq12gt0 15417 cosq14gt0 15419 cosq23lt0 15420 coseq0q4123 15421 coseq00topi 15422 coseq0negpitopi 15423 cosordlem 15436 cosq34lt1 15437 cos02pilt1 15438 cos0pilt1 15439 ioocosf1o 15441 negpitopissre 15442 iooref1o 16175 taupi 16214 |
| Copyright terms: Public domain | W3C validator |