ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexri Unicode version

Theorem rexri 8101
Description: A standard real is an extended real (inference form.) (Contributed by David Moews, 28-Feb-2017.)
Hypothesis
Ref Expression
rexri.1  |-  A  e.  RR
Assertion
Ref Expression
rexri  |-  A  e. 
RR*

Proof of Theorem rexri
StepHypRef Expression
1 rexri.1 . 2  |-  A  e.  RR
2 rexr 8089 . 2  |-  ( A  e.  RR  ->  A  e.  RR* )
31, 2ax-mp 5 1  |-  A  e. 
RR*
Colors of variables: wff set class
Syntax hints:    e. wcel 2167   RRcr 7895   RR*cxr 8077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-xr 8082
This theorem is referenced by:  1xr  8102  cos12dec  11950  halfleoddlt  12076  reeff1oleme  15092  reeff1o  15093  sin0pilem2  15102  neghalfpirx  15114  sincosq1sgn  15146  sincosq2sgn  15147  sincosq4sgn  15149  sinq12gt0  15150  cosq14gt0  15152  cosq23lt0  15153  coseq0q4123  15154  coseq00topi  15155  coseq0negpitopi  15156  cosordlem  15169  cosq34lt1  15170  cos02pilt1  15171  cos0pilt1  15172  ioocosf1o  15174  negpitopissre  15175  iooref1o  15765  taupi  15804
  Copyright terms: Public domain W3C validator