ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2if2dc Unicode version

Theorem 2if2dc 3642
Description: Resolve two nested conditionals. (Contributed by Alexander van der Vekens, 27-Mar-2018.)
Hypotheses
Ref Expression
2if2.1  |-  ( (
ph  /\  ps )  ->  D  =  A )
2if2.2  |-  ( (
ph  /\  -.  ps  /\  th )  ->  D  =  B )
2if2.3  |-  ( (
ph  /\  -.  ps  /\  -.  th )  ->  D  =  C )
2if2dc.ps  |-  ( ph  -> DECID  ps )
2if2dc.th  |-  ( (
ph  /\  -.  ps )  -> DECID  th )
Assertion
Ref Expression
2if2dc  |-  ( ph  ->  D  =  if ( ps ,  A ,  if ( th ,  B ,  C ) ) )

Proof of Theorem 2if2dc
StepHypRef Expression
1 2if2.1 . . 3  |-  ( (
ph  /\  ps )  ->  D  =  A )
2 iftrue 3607 . . . 4  |-  ( ps 
->  if ( ps ,  A ,  if ( th ,  B ,  C ) )  =  A )
32adantl 277 . . 3  |-  ( (
ph  /\  ps )  ->  if ( ps ,  A ,  if ( th ,  B ,  C ) )  =  A )
41, 3eqtr4d 2265 . 2  |-  ( (
ph  /\  ps )  ->  D  =  if ( ps ,  A ,  if ( th ,  B ,  C ) ) )
5 2if2.2 . . . . . 6  |-  ( (
ph  /\  -.  ps  /\  th )  ->  D  =  B )
653expa 1227 . . . . 5  |-  ( ( ( ph  /\  -.  ps )  /\  th )  ->  D  =  B )
7 iftrue 3607 . . . . . 6  |-  ( th 
->  if ( th ,  B ,  C )  =  B )
87adantl 277 . . . . 5  |-  ( ( ( ph  /\  -.  ps )  /\  th )  ->  if ( th ,  B ,  C )  =  B )
96, 8eqtr4d 2265 . . . 4  |-  ( ( ( ph  /\  -.  ps )  /\  th )  ->  D  =  if ( th ,  B ,  C ) )
10 2if2.3 . . . . . 6  |-  ( (
ph  /\  -.  ps  /\  -.  th )  ->  D  =  C )
11103expa 1227 . . . . 5  |-  ( ( ( ph  /\  -.  ps )  /\  -.  th )  ->  D  =  C )
12 iffalse 3610 . . . . . . 7  |-  ( -. 
th  ->  if ( th ,  B ,  C
)  =  C )
1312eqcomd 2235 . . . . . 6  |-  ( -. 
th  ->  C  =  if ( th ,  B ,  C ) )
1413adantl 277 . . . . 5  |-  ( ( ( ph  /\  -.  ps )  /\  -.  th )  ->  C  =  if ( th ,  B ,  C ) )
1511, 14eqtrd 2262 . . . 4  |-  ( ( ( ph  /\  -.  ps )  /\  -.  th )  ->  D  =  if ( th ,  B ,  C ) )
16 2if2dc.th . . . . 5  |-  ( (
ph  /\  -.  ps )  -> DECID  th )
17 exmiddc 841 . . . . 5  |-  (DECID  th  ->  ( th  \/  -.  th ) )
1816, 17syl 14 . . . 4  |-  ( (
ph  /\  -.  ps )  ->  ( th  \/  -.  th ) )
199, 15, 18mpjaodan 803 . . 3  |-  ( (
ph  /\  -.  ps )  ->  D  =  if ( th ,  B ,  C ) )
20 iffalse 3610 . . . 4  |-  ( -. 
ps  ->  if ( ps ,  A ,  if ( th ,  B ,  C ) )  =  if ( th ,  B ,  C )
)
2120adantl 277 . . 3  |-  ( (
ph  /\  -.  ps )  ->  if ( ps ,  A ,  if ( th ,  B ,  C ) )  =  if ( th ,  B ,  C )
)
2219, 21eqtr4d 2265 . 2  |-  ( (
ph  /\  -.  ps )  ->  D  =  if ( ps ,  A ,  if ( th ,  B ,  C ) ) )
23 2if2dc.ps . . 3  |-  ( ph  -> DECID  ps )
24 exmiddc 841 . . 3  |-  (DECID  ps  ->  ( ps  \/  -.  ps ) )
2523, 24syl 14 . 2  |-  ( ph  ->  ( ps  \/  -.  ps ) )
264, 22, 25mpjaodan 803 1  |-  ( ph  ->  D  =  if ( ps ,  A ,  if ( th ,  B ,  C ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713  DECID wdc 839    /\ w3a 1002    = wceq 1395   ifcif 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-if 3603
This theorem is referenced by:  pfxccat3  11261  swrdccat  11262  swrdccat3b  11267
  Copyright terms: Public domain W3C validator