| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2if2dc | Unicode version | ||
| Description: Resolve two nested conditionals. (Contributed by Alexander van der Vekens, 27-Mar-2018.) |
| Ref | Expression |
|---|---|
| 2if2.1 |
|
| 2if2.2 |
|
| 2if2.3 |
|
| 2if2dc.ps |
|
| 2if2dc.th |
|
| Ref | Expression |
|---|---|
| 2if2dc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2if2.1 |
. . 3
| |
| 2 | iftrue 3584 |
. . . 4
| |
| 3 | 2 | adantl 277 |
. . 3
|
| 4 | 1, 3 | eqtr4d 2243 |
. 2
|
| 5 | 2if2.2 |
. . . . . 6
| |
| 6 | 5 | 3expa 1206 |
. . . . 5
|
| 7 | iftrue 3584 |
. . . . . 6
| |
| 8 | 7 | adantl 277 |
. . . . 5
|
| 9 | 6, 8 | eqtr4d 2243 |
. . . 4
|
| 10 | 2if2.3 |
. . . . . 6
| |
| 11 | 10 | 3expa 1206 |
. . . . 5
|
| 12 | iffalse 3587 |
. . . . . . 7
| |
| 13 | 12 | eqcomd 2213 |
. . . . . 6
|
| 14 | 13 | adantl 277 |
. . . . 5
|
| 15 | 11, 14 | eqtrd 2240 |
. . . 4
|
| 16 | 2if2dc.th |
. . . . 5
| |
| 17 | exmiddc 838 |
. . . . 5
| |
| 18 | 16, 17 | syl 14 |
. . . 4
|
| 19 | 9, 15, 18 | mpjaodan 800 |
. . 3
|
| 20 | iffalse 3587 |
. . . 4
| |
| 21 | 20 | adantl 277 |
. . 3
|
| 22 | 19, 21 | eqtr4d 2243 |
. 2
|
| 23 | 2if2dc.ps |
. . 3
| |
| 24 | exmiddc 838 |
. . 3
| |
| 25 | 23, 24 | syl 14 |
. 2
|
| 26 | 4, 22, 25 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-if 3580 |
| This theorem is referenced by: pfxccat3 11225 swrdccat 11226 swrdccat3b 11231 |
| Copyright terms: Public domain | W3C validator |