ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2if2dc GIF version

Theorem 2if2dc 3642
Description: Resolve two nested conditionals. (Contributed by Alexander van der Vekens, 27-Mar-2018.)
Hypotheses
Ref Expression
2if2.1 ((𝜑𝜓) → 𝐷 = 𝐴)
2if2.2 ((𝜑 ∧ ¬ 𝜓𝜃) → 𝐷 = 𝐵)
2if2.3 ((𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜃) → 𝐷 = 𝐶)
2if2dc.ps (𝜑DECID 𝜓)
2if2dc.th ((𝜑 ∧ ¬ 𝜓) → DECID 𝜃)
Assertion
Ref Expression
2if2dc (𝜑𝐷 = if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)))

Proof of Theorem 2if2dc
StepHypRef Expression
1 2if2.1 . . 3 ((𝜑𝜓) → 𝐷 = 𝐴)
2 iftrue 3607 . . . 4 (𝜓 → if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)) = 𝐴)
32adantl 277 . . 3 ((𝜑𝜓) → if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)) = 𝐴)
41, 3eqtr4d 2265 . 2 ((𝜑𝜓) → 𝐷 = if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)))
5 2if2.2 . . . . . 6 ((𝜑 ∧ ¬ 𝜓𝜃) → 𝐷 = 𝐵)
653expa 1227 . . . . 5 (((𝜑 ∧ ¬ 𝜓) ∧ 𝜃) → 𝐷 = 𝐵)
7 iftrue 3607 . . . . . 6 (𝜃 → if(𝜃, 𝐵, 𝐶) = 𝐵)
87adantl 277 . . . . 5 (((𝜑 ∧ ¬ 𝜓) ∧ 𝜃) → if(𝜃, 𝐵, 𝐶) = 𝐵)
96, 8eqtr4d 2265 . . . 4 (((𝜑 ∧ ¬ 𝜓) ∧ 𝜃) → 𝐷 = if(𝜃, 𝐵, 𝐶))
10 2if2.3 . . . . . 6 ((𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜃) → 𝐷 = 𝐶)
11103expa 1227 . . . . 5 (((𝜑 ∧ ¬ 𝜓) ∧ ¬ 𝜃) → 𝐷 = 𝐶)
12 iffalse 3610 . . . . . . 7 𝜃 → if(𝜃, 𝐵, 𝐶) = 𝐶)
1312eqcomd 2235 . . . . . 6 𝜃𝐶 = if(𝜃, 𝐵, 𝐶))
1413adantl 277 . . . . 5 (((𝜑 ∧ ¬ 𝜓) ∧ ¬ 𝜃) → 𝐶 = if(𝜃, 𝐵, 𝐶))
1511, 14eqtrd 2262 . . . 4 (((𝜑 ∧ ¬ 𝜓) ∧ ¬ 𝜃) → 𝐷 = if(𝜃, 𝐵, 𝐶))
16 2if2dc.th . . . . 5 ((𝜑 ∧ ¬ 𝜓) → DECID 𝜃)
17 exmiddc 841 . . . . 5 (DECID 𝜃 → (𝜃 ∨ ¬ 𝜃))
1816, 17syl 14 . . . 4 ((𝜑 ∧ ¬ 𝜓) → (𝜃 ∨ ¬ 𝜃))
199, 15, 18mpjaodan 803 . . 3 ((𝜑 ∧ ¬ 𝜓) → 𝐷 = if(𝜃, 𝐵, 𝐶))
20 iffalse 3610 . . . 4 𝜓 → if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)) = if(𝜃, 𝐵, 𝐶))
2120adantl 277 . . 3 ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)) = if(𝜃, 𝐵, 𝐶))
2219, 21eqtr4d 2265 . 2 ((𝜑 ∧ ¬ 𝜓) → 𝐷 = if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)))
23 2if2dc.ps . . 3 (𝜑DECID 𝜓)
24 exmiddc 841 . . 3 (DECID 𝜓 → (𝜓 ∨ ¬ 𝜓))
2523, 24syl 14 . 2 (𝜑 → (𝜓 ∨ ¬ 𝜓))
264, 22, 25mpjaodan 803 1 (𝜑𝐷 = if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  DECID wdc 839  w3a 1002   = wceq 1395  ifcif 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-if 3603
This theorem is referenced by:  pfxccat3  11261  swrdccat  11262  swrdccat3b  11267
  Copyright terms: Public domain W3C validator