ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2if2dc GIF version

Theorem 2if2dc 3619
Description: Resolve two nested conditionals. (Contributed by Alexander van der Vekens, 27-Mar-2018.)
Hypotheses
Ref Expression
2if2.1 ((𝜑𝜓) → 𝐷 = 𝐴)
2if2.2 ((𝜑 ∧ ¬ 𝜓𝜃) → 𝐷 = 𝐵)
2if2.3 ((𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜃) → 𝐷 = 𝐶)
2if2dc.ps (𝜑DECID 𝜓)
2if2dc.th ((𝜑 ∧ ¬ 𝜓) → DECID 𝜃)
Assertion
Ref Expression
2if2dc (𝜑𝐷 = if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)))

Proof of Theorem 2if2dc
StepHypRef Expression
1 2if2.1 . . 3 ((𝜑𝜓) → 𝐷 = 𝐴)
2 iftrue 3584 . . . 4 (𝜓 → if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)) = 𝐴)
32adantl 277 . . 3 ((𝜑𝜓) → if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)) = 𝐴)
41, 3eqtr4d 2243 . 2 ((𝜑𝜓) → 𝐷 = if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)))
5 2if2.2 . . . . . 6 ((𝜑 ∧ ¬ 𝜓𝜃) → 𝐷 = 𝐵)
653expa 1206 . . . . 5 (((𝜑 ∧ ¬ 𝜓) ∧ 𝜃) → 𝐷 = 𝐵)
7 iftrue 3584 . . . . . 6 (𝜃 → if(𝜃, 𝐵, 𝐶) = 𝐵)
87adantl 277 . . . . 5 (((𝜑 ∧ ¬ 𝜓) ∧ 𝜃) → if(𝜃, 𝐵, 𝐶) = 𝐵)
96, 8eqtr4d 2243 . . . 4 (((𝜑 ∧ ¬ 𝜓) ∧ 𝜃) → 𝐷 = if(𝜃, 𝐵, 𝐶))
10 2if2.3 . . . . . 6 ((𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜃) → 𝐷 = 𝐶)
11103expa 1206 . . . . 5 (((𝜑 ∧ ¬ 𝜓) ∧ ¬ 𝜃) → 𝐷 = 𝐶)
12 iffalse 3587 . . . . . . 7 𝜃 → if(𝜃, 𝐵, 𝐶) = 𝐶)
1312eqcomd 2213 . . . . . 6 𝜃𝐶 = if(𝜃, 𝐵, 𝐶))
1413adantl 277 . . . . 5 (((𝜑 ∧ ¬ 𝜓) ∧ ¬ 𝜃) → 𝐶 = if(𝜃, 𝐵, 𝐶))
1511, 14eqtrd 2240 . . . 4 (((𝜑 ∧ ¬ 𝜓) ∧ ¬ 𝜃) → 𝐷 = if(𝜃, 𝐵, 𝐶))
16 2if2dc.th . . . . 5 ((𝜑 ∧ ¬ 𝜓) → DECID 𝜃)
17 exmiddc 838 . . . . 5 (DECID 𝜃 → (𝜃 ∨ ¬ 𝜃))
1816, 17syl 14 . . . 4 ((𝜑 ∧ ¬ 𝜓) → (𝜃 ∨ ¬ 𝜃))
199, 15, 18mpjaodan 800 . . 3 ((𝜑 ∧ ¬ 𝜓) → 𝐷 = if(𝜃, 𝐵, 𝐶))
20 iffalse 3587 . . . 4 𝜓 → if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)) = if(𝜃, 𝐵, 𝐶))
2120adantl 277 . . 3 ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)) = if(𝜃, 𝐵, 𝐶))
2219, 21eqtr4d 2243 . 2 ((𝜑 ∧ ¬ 𝜓) → 𝐷 = if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)))
23 2if2dc.ps . . 3 (𝜑DECID 𝜓)
24 exmiddc 838 . . 3 (DECID 𝜓 → (𝜓 ∨ ¬ 𝜓))
2523, 24syl 14 . 2 (𝜑 → (𝜓 ∨ ¬ 𝜓))
264, 22, 25mpjaodan 800 1 (𝜑𝐷 = if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710  DECID wdc 836  w3a 981   = wceq 1373  ifcif 3579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-if 3580
This theorem is referenced by:  pfxccat3  11225  swrdccat  11226  swrdccat3b  11231
  Copyright terms: Public domain W3C validator