Proof of Theorem 2if2dc
| Step | Hyp | Ref
| Expression |
| 1 | | 2if2.1 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → 𝐷 = 𝐴) |
| 2 | | iftrue 3584 |
. . . 4
⊢ (𝜓 → if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)) = 𝐴) |
| 3 | 2 | adantl 277 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)) = 𝐴) |
| 4 | 1, 3 | eqtr4d 2243 |
. 2
⊢ ((𝜑 ∧ 𝜓) → 𝐷 = if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶))) |
| 5 | | 2if2.2 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝜓 ∧ 𝜃) → 𝐷 = 𝐵) |
| 6 | 5 | 3expa 1206 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝜓) ∧ 𝜃) → 𝐷 = 𝐵) |
| 7 | | iftrue 3584 |
. . . . . 6
⊢ (𝜃 → if(𝜃, 𝐵, 𝐶) = 𝐵) |
| 8 | 7 | adantl 277 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝜓) ∧ 𝜃) → if(𝜃, 𝐵, 𝐶) = 𝐵) |
| 9 | 6, 8 | eqtr4d 2243 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝜓) ∧ 𝜃) → 𝐷 = if(𝜃, 𝐵, 𝐶)) |
| 10 | | 2if2.3 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜃) → 𝐷 = 𝐶) |
| 11 | 10 | 3expa 1206 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝜓) ∧ ¬ 𝜃) → 𝐷 = 𝐶) |
| 12 | | iffalse 3587 |
. . . . . . 7
⊢ (¬
𝜃 → if(𝜃, 𝐵, 𝐶) = 𝐶) |
| 13 | 12 | eqcomd 2213 |
. . . . . 6
⊢ (¬
𝜃 → 𝐶 = if(𝜃, 𝐵, 𝐶)) |
| 14 | 13 | adantl 277 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝜓) ∧ ¬ 𝜃) → 𝐶 = if(𝜃, 𝐵, 𝐶)) |
| 15 | 11, 14 | eqtrd 2240 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝜓) ∧ ¬ 𝜃) → 𝐷 = if(𝜃, 𝐵, 𝐶)) |
| 16 | | 2if2dc.th |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝜓) → DECID 𝜃) |
| 17 | | exmiddc 838 |
. . . . 5
⊢
(DECID 𝜃 → (𝜃 ∨ ¬ 𝜃)) |
| 18 | 16, 17 | syl 14 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝜓) → (𝜃 ∨ ¬ 𝜃)) |
| 19 | 9, 15, 18 | mpjaodan 800 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐷 = if(𝜃, 𝐵, 𝐶)) |
| 20 | | iffalse 3587 |
. . . 4
⊢ (¬
𝜓 → if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)) = if(𝜃, 𝐵, 𝐶)) |
| 21 | 20 | adantl 277 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)) = if(𝜃, 𝐵, 𝐶)) |
| 22 | 19, 21 | eqtr4d 2243 |
. 2
⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐷 = if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶))) |
| 23 | | 2if2dc.ps |
. . 3
⊢ (𝜑 → DECID 𝜓) |
| 24 | | exmiddc 838 |
. . 3
⊢
(DECID 𝜓 → (𝜓 ∨ ¬ 𝜓)) |
| 25 | 23, 24 | syl 14 |
. 2
⊢ (𝜑 → (𝜓 ∨ ¬ 𝜓)) |
| 26 | 4, 22, 25 | mpjaodan 800 |
1
⊢ (𝜑 → 𝐷 = if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶))) |