ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifandc Unicode version

Theorem ifandc 3557
Description: Rewrite a conjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.)
Assertion
Ref Expression
ifandc  |-  (DECID  ph  ->  if ( ( ph  /\  ps ) ,  A ,  B )  =  if ( ph ,  if ( ps ,  A ,  B ) ,  B
) )

Proof of Theorem ifandc
StepHypRef Expression
1 df-dc 825 . 2  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
2 iftrue 3525 . . . 4  |-  ( ph  ->  if ( ph ,  if ( ps ,  A ,  B ) ,  B
)  =  if ( ps ,  A ,  B ) )
3 ibar 299 . . . . 5  |-  ( ph  ->  ( ps  <->  ( ph  /\ 
ps ) ) )
43ifbid 3541 . . . 4  |-  ( ph  ->  if ( ps ,  A ,  B )  =  if ( ( ph  /\ 
ps ) ,  A ,  B ) )
52, 4eqtr2d 2199 . . 3  |-  ( ph  ->  if ( ( ph  /\ 
ps ) ,  A ,  B )  =  if ( ph ,  if ( ps ,  A ,  B ) ,  B
) )
6 simpl 108 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ph )
76con3i 622 . . . . 5  |-  ( -. 
ph  ->  -.  ( ph  /\ 
ps ) )
87iffalsed 3530 . . . 4  |-  ( -. 
ph  ->  if ( (
ph  /\  ps ) ,  A ,  B )  =  B )
9 iffalse 3528 . . . 4  |-  ( -. 
ph  ->  if ( ph ,  if ( ps ,  A ,  B ) ,  B )  =  B )
108, 9eqtr4d 2201 . . 3  |-  ( -. 
ph  ->  if ( (
ph  /\  ps ) ,  A ,  B )  =  if ( ph ,  if ( ps ,  A ,  B ) ,  B ) )
115, 10jaoi 706 . 2  |-  ( (
ph  \/  -.  ph )  ->  if ( ( ph  /\ 
ps ) ,  A ,  B )  =  if ( ph ,  if ( ps ,  A ,  B ) ,  B
) )
121, 11sylbi 120 1  |-  (DECID  ph  ->  if ( ( ph  /\  ps ) ,  A ,  B )  =  if ( ph ,  if ( ps ,  A ,  B ) ,  B
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 824    = wceq 1343   ifcif 3520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-dc 825  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-if 3521
This theorem is referenced by:  isumss  11332
  Copyright terms: Public domain W3C validator