Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifandc | Unicode version |
Description: Rewrite a conjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
ifandc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dc 825 | . 2 DECID | |
2 | iftrue 3525 | . . . 4 | |
3 | ibar 299 | . . . . 5 | |
4 | 3 | ifbid 3541 | . . . 4 |
5 | 2, 4 | eqtr2d 2199 | . . 3 |
6 | simpl 108 | . . . . . 6 | |
7 | 6 | con3i 622 | . . . . 5 |
8 | 7 | iffalsed 3530 | . . . 4 |
9 | iffalse 3528 | . . . 4 | |
10 | 8, 9 | eqtr4d 2201 | . . 3 |
11 | 5, 10 | jaoi 706 | . 2 |
12 | 1, 11 | sylbi 120 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 DECID wdc 824 wceq 1343 cif 3520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-if 3521 |
This theorem is referenced by: isumss 11332 |
Copyright terms: Public domain | W3C validator |