| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifandc | Unicode version | ||
| Description: Rewrite a conjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| ifandc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 836 |
. 2
| |
| 2 | iftrue 3567 |
. . . 4
| |
| 3 | ibar 301 |
. . . . 5
| |
| 4 | 3 | ifbid 3583 |
. . . 4
|
| 5 | 2, 4 | eqtr2d 2230 |
. . 3
|
| 6 | simpl 109 |
. . . . . 6
| |
| 7 | 6 | con3i 633 |
. . . . 5
|
| 8 | 7 | iffalsed 3572 |
. . . 4
|
| 9 | iffalse 3570 |
. . . 4
| |
| 10 | 8, 9 | eqtr4d 2232 |
. . 3
|
| 11 | 5, 10 | jaoi 717 |
. 2
|
| 12 | 1, 11 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-if 3563 |
| This theorem is referenced by: isumss 11573 |
| Copyright terms: Public domain | W3C validator |