| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifandc | Unicode version | ||
| Description: Rewrite a conjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| ifandc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 837 |
. 2
| |
| 2 | iftrue 3584 |
. . . 4
| |
| 3 | ibar 301 |
. . . . 5
| |
| 4 | 3 | ifbid 3601 |
. . . 4
|
| 5 | 2, 4 | eqtr2d 2241 |
. . 3
|
| 6 | simpl 109 |
. . . . . 6
| |
| 7 | 6 | con3i 633 |
. . . . 5
|
| 8 | 7 | iffalsed 3589 |
. . . 4
|
| 9 | iffalse 3587 |
. . . 4
| |
| 10 | 8, 9 | eqtr4d 2243 |
. . 3
|
| 11 | 5, 10 | jaoi 718 |
. 2
|
| 12 | 1, 11 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-if 3580 |
| This theorem is referenced by: isumss 11817 |
| Copyright terms: Public domain | W3C validator |