| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifandc | Unicode version | ||
| Description: Rewrite a conjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| ifandc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 840 |
. 2
| |
| 2 | iftrue 3607 |
. . . 4
| |
| 3 | ibar 301 |
. . . . 5
| |
| 4 | 3 | ifbid 3624 |
. . . 4
|
| 5 | 2, 4 | eqtr2d 2263 |
. . 3
|
| 6 | simpl 109 |
. . . . . 6
| |
| 7 | 6 | con3i 635 |
. . . . 5
|
| 8 | 7 | iffalsed 3612 |
. . . 4
|
| 9 | iffalse 3610 |
. . . 4
| |
| 10 | 8, 9 | eqtr4d 2265 |
. . 3
|
| 11 | 5, 10 | jaoi 721 |
. 2
|
| 12 | 1, 11 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-if 3603 |
| This theorem is referenced by: isumss 11902 |
| Copyright terms: Public domain | W3C validator |