![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3expa | Unicode version |
Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3exp.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3expa |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | 3exp 1202 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | imp31 256 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: ad4ant123 1215 ad4ant124 1216 ad4ant134 1217 ad4ant234 1218 3anidm23 1297 mp3an2 1325 mpd3an3 1338 rgen3 2564 moi2 2918 sbc3ie 3036 preq12bg 3773 issod 4319 wepo 4359 reuhypd 4471 funimass4 5566 fvtp1g 5724 f1imass 5774 fcof1o 5789 f1ofveu 5862 f1ocnvfv3 5863 acexmid 5873 2ndrn 6183 frecrdg 6408 oawordriexmid 6470 mapxpen 6847 findcard 6887 findcard2 6888 findcard2s 6889 ltapig 7336 ltanqi 7400 ltmnqi 7401 lt2addnq 7402 lt2mulnq 7403 prarloclemcalc 7500 genpassl 7522 genpassu 7523 prmuloc 7564 ltexprlemm 7598 ltexprlemfl 7607 ltexprlemfu 7609 lteupri 7615 ltaprg 7617 mul4 8088 add4 8117 cnegexlem2 8132 cnegexlem3 8133 2addsub 8170 addsubeq4 8171 muladd 8340 ltleadd 8402 reapmul1 8551 apreim 8559 receuap 8625 p1le 8805 lemul12b 8817 lbinf 8904 zdiv 9340 fzind 9367 fnn0ind 9368 uzss 9547 qmulcl 9636 qreccl 9641 xrlttr 9794 xaddass 9868 icc0r 9925 iooshf 9951 elfz5 10016 elfz0fzfz0 10125 fzind2 10238 ioo0 10259 ico0 10261 ioc0 10262 expnegap0 10527 expineg2 10528 mulexpzap 10559 expsubap 10567 expnbnd 10643 facndiv 10718 bccmpl 10733 bcval5 10742 bcpasc 10745 crim 10866 climshftlemg 11309 2sumeq2dv 11378 hash2iun 11486 2cprodeq2dv 11575 dvdsval3 11797 dvdsnegb 11814 muldvds1 11822 muldvds2 11823 dvdscmul 11824 dvdsmulc 11825 dvds2ln 11830 divalgb 11929 ndvdssub 11934 gcddiv 12019 rpexp1i 12153 phiprmpw 12221 hashgcdeq 12238 pythagtriplem1 12264 pockthg 12354 infpnlem1 12356 4sqlem3 12387 imasaddfnlemg 12734 mndpfo 12838 grplmulf1o 12943 grplactcnv 12971 mulgnn0subcl 12995 mulgsubcl 12996 mulgdir 13013 issubg2m 13047 issubgrpd2 13048 nmzsubg 13068 eqgen 13084 srglmhm 13174 srgrmhm 13175 oppr1g 13250 dvdsrcl2 13266 crngunit 13278 subrgugrp 13359 subsubrg 13364 islmod 13379 lmodvsdir 13400 lmodvsass 13401 innei 13633 iscnp4 13688 cnpnei 13689 cnnei 13702 cnconst 13704 ismeti 13816 isxmet2d 13818 elbl2ps 13862 elbl2 13863 xblpnfps 13868 xblpnf 13869 xblm 13887 blininf 13894 blssexps 13899 blssex 13900 blsscls2 13963 metss 13964 metrest 13976 metcn 13984 divcnap 14025 cdivcncfap 14057 lgslem4 14374 lgscllem 14378 lgsneg1 14396 lgsne0 14409 |
Copyright terms: Public domain | W3C validator |