| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3expa | Unicode version | ||
| Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3expa |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . 3
| |
| 2 | 1 | 3exp 1204 |
. 2
|
| 3 | 2 | imp31 256 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: ad4ant123 1217 ad4ant124 1218 ad4ant134 1219 ad4ant234 1220 ad5ant123 1241 3anidm23 1308 mp3an2 1336 mpd3an3 1349 rgen3 2584 moi2 2945 sbc3ie 3063 preq12bg 3803 issod 4354 wepo 4394 reuhypd 4506 funimass4 5611 fvtp1g 5770 f1imass 5821 fcof1o 5836 f1ofveu 5910 f1ocnvfv3 5911 acexmid 5921 2ndrn 6241 frecrdg 6466 oawordriexmid 6528 mapxpen 6909 findcard 6949 findcard2 6950 findcard2s 6951 ltapig 7405 ltanqi 7469 ltmnqi 7470 lt2addnq 7471 lt2mulnq 7472 prarloclemcalc 7569 genpassl 7591 genpassu 7592 prmuloc 7633 ltexprlemm 7667 ltexprlemfl 7676 ltexprlemfu 7678 lteupri 7684 ltaprg 7686 mul4 8158 add4 8187 cnegexlem2 8202 cnegexlem3 8203 2addsub 8240 addsubeq4 8241 muladd 8410 ltleadd 8473 reapmul1 8622 apreim 8630 receuap 8696 p1le 8876 lemul12b 8888 lbinf 8975 zdiv 9414 fzind 9441 fnn0ind 9442 uzss 9622 qmulcl 9711 qreccl 9716 xrlttr 9870 xaddass 9944 icc0r 10001 iooshf 10027 elfz5 10092 elfz0fzfz0 10201 fzind2 10315 ioo0 10349 ico0 10351 ioc0 10352 expnegap0 10639 expineg2 10640 mulexpzap 10671 expsubap 10679 expnbnd 10755 facndiv 10831 bccmpl 10846 bcval5 10855 bcpasc 10858 crim 11023 climshftlemg 11467 2sumeq2dv 11536 hash2iun 11644 2cprodeq2dv 11733 dvdsval3 11956 dvdsnegb 11973 muldvds1 11981 muldvds2 11982 dvdscmul 11983 dvdsmulc 11984 dvds2ln 11989 divalgb 12090 ndvdssub 12095 gcddiv 12186 rpexp1i 12322 phiprmpw 12390 hashgcdeq 12408 pythagtriplem1 12434 pockthg 12526 infpnlem1 12528 4sqlem3 12559 imasaddfnlemg 12957 mndpfo 13079 grplmulf1o 13206 grplactcnv 13234 mulgnn0subcl 13265 mulgsubcl 13266 mulgdir 13284 issubg2m 13319 issubgrpd2 13320 nmzsubg 13340 eqgen 13357 ghmmulg 13386 ghmf1 13403 kerf1ghm 13404 conjghm 13406 srglmhm 13549 srgrmhm 13550 ringlghm 13617 ringrghm 13618 oppr1g 13638 dvdsrcl2 13655 crngunit 13667 subsubrng 13770 subrgugrp 13796 subsubrg 13801 islmod 13847 lmodvsdir 13868 lmodvsass 13869 lsssubg 13933 lss1d 13939 lidlsubg 14042 lidlsubcl 14043 expghmap 14163 mulgghm2 14164 innei 14399 iscnp4 14454 cnpnei 14455 cnnei 14468 cnconst 14470 ismeti 14582 isxmet2d 14584 elbl2ps 14628 elbl2 14629 xblpnfps 14634 xblpnf 14635 xblm 14653 blininf 14660 blssexps 14665 blssex 14666 blsscls2 14729 metss 14730 metrest 14742 metcn 14750 divcnap 14801 cdivcncfap 14840 dvply1 15001 lgslem4 15244 lgscllem 15248 lgsneg1 15266 lgsne0 15279 |
| Copyright terms: Public domain | W3C validator |