| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3expa | Unicode version | ||
| Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3expa |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . 3
| |
| 2 | 1 | 3exp 1204 |
. 2
|
| 3 | 2 | imp31 256 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: ad4ant123 1217 ad4ant124 1218 ad4ant134 1219 ad4ant234 1220 ad5ant123 1241 3anidm23 1308 mp3an2 1336 mpd3an3 1349 rgen3 2584 moi2 2945 sbc3ie 3063 preq12bg 3804 issod 4355 wepo 4395 reuhypd 4507 funimass4 5612 fvtp1g 5771 f1imass 5822 fcof1o 5837 f1ofveu 5911 f1ocnvfv3 5912 acexmid 5922 2ndrn 6242 frecrdg 6467 oawordriexmid 6529 mapxpen 6910 findcard 6950 findcard2 6951 findcard2s 6952 ltapig 7407 ltanqi 7471 ltmnqi 7472 lt2addnq 7473 lt2mulnq 7474 prarloclemcalc 7571 genpassl 7593 genpassu 7594 prmuloc 7635 ltexprlemm 7669 ltexprlemfl 7678 ltexprlemfu 7680 lteupri 7686 ltaprg 7688 mul4 8160 add4 8189 cnegexlem2 8204 cnegexlem3 8205 2addsub 8242 addsubeq4 8243 muladd 8412 ltleadd 8475 reapmul1 8624 apreim 8632 receuap 8698 p1le 8878 lemul12b 8890 lbinf 8977 zdiv 9416 fzind 9443 fnn0ind 9444 uzss 9624 qmulcl 9713 qreccl 9718 xrlttr 9872 xaddass 9946 icc0r 10003 iooshf 10029 elfz5 10094 elfz0fzfz0 10203 fzind2 10317 ioo0 10351 ico0 10353 ioc0 10354 expnegap0 10641 expineg2 10642 mulexpzap 10673 expsubap 10681 expnbnd 10757 facndiv 10833 bccmpl 10848 bcval5 10857 bcpasc 10860 crim 11025 climshftlemg 11469 2sumeq2dv 11538 hash2iun 11646 2cprodeq2dv 11735 dvdsval3 11958 dvdsnegb 11975 muldvds1 11983 muldvds2 11984 dvdscmul 11985 dvdsmulc 11986 dvds2ln 11991 divalgb 12092 ndvdssub 12097 gcddiv 12196 rpexp1i 12332 phiprmpw 12400 hashgcdeq 12418 pythagtriplem1 12444 pockthg 12536 infpnlem1 12538 4sqlem3 12569 imasaddfnlemg 12967 mndpfo 13089 grplmulf1o 13216 grplactcnv 13244 mulgnn0subcl 13275 mulgsubcl 13276 mulgdir 13294 issubg2m 13329 issubgrpd2 13330 nmzsubg 13350 eqgen 13367 ghmmulg 13396 ghmf1 13413 kerf1ghm 13414 conjghm 13416 srglmhm 13559 srgrmhm 13560 ringlghm 13627 ringrghm 13628 oppr1g 13648 dvdsrcl2 13665 crngunit 13677 subsubrng 13780 subrgugrp 13806 subsubrg 13811 islmod 13857 lmodvsdir 13878 lmodvsass 13879 lsssubg 13943 lss1d 13949 lidlsubg 14052 lidlsubcl 14053 expghmap 14173 mulgghm2 14174 innei 14409 iscnp4 14464 cnpnei 14465 cnnei 14478 cnconst 14480 ismeti 14592 isxmet2d 14594 elbl2ps 14638 elbl2 14639 xblpnfps 14644 xblpnf 14645 xblm 14663 blininf 14670 blssexps 14675 blssex 14676 blsscls2 14739 metss 14740 metrest 14752 metcn 14760 divcnap 14811 cdivcncfap 14850 dvply1 15011 lgslem4 15254 lgscllem 15258 lgsneg1 15276 lgsne0 15289 |
| Copyright terms: Public domain | W3C validator |