| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3expa | Unicode version | ||
| Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3expa |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . 3
| |
| 2 | 1 | 3exp 1205 |
. 2
|
| 3 | 2 | imp31 256 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: ad4ant123 1218 ad4ant124 1219 ad4ant134 1220 ad4ant234 1221 ad5ant123 1242 3anidm23 1310 mp3an2 1338 mpd3an3 1351 rgen3 2593 moi2 2954 sbc3ie 3072 preq12bg 3814 issod 4367 wepo 4407 reuhypd 4519 funimass4 5631 fvtp1g 5794 f1imass 5845 fcof1o 5860 f1ofveu 5934 f1ocnvfv3 5935 acexmid 5945 2ndrn 6271 frecrdg 6496 oawordriexmid 6558 mapxpen 6947 findcard 6987 findcard2 6988 findcard2s 6989 ltapig 7453 ltanqi 7517 ltmnqi 7518 lt2addnq 7519 lt2mulnq 7520 prarloclemcalc 7617 genpassl 7639 genpassu 7640 prmuloc 7681 ltexprlemm 7715 ltexprlemfl 7724 ltexprlemfu 7726 lteupri 7732 ltaprg 7734 mul4 8206 add4 8235 cnegexlem2 8250 cnegexlem3 8251 2addsub 8288 addsubeq4 8289 muladd 8458 ltleadd 8521 reapmul1 8670 apreim 8678 receuap 8744 p1le 8924 lemul12b 8936 lbinf 9023 zdiv 9463 fzind 9490 fnn0ind 9491 uzss 9671 qmulcl 9760 qreccl 9765 xrlttr 9919 xaddass 9993 icc0r 10050 iooshf 10076 elfz5 10141 elfz0fzfz0 10250 fzind2 10370 ioo0 10404 ico0 10406 ioc0 10407 expnegap0 10694 expineg2 10695 mulexpzap 10726 expsubap 10734 expnbnd 10810 facndiv 10886 bccmpl 10901 bcval5 10910 bcpasc 10913 ccatrn 11068 swrdspsleq 11123 swrdccat2 11127 ccatpfx 11155 pfxccat1 11156 crim 11202 climshftlemg 11646 2sumeq2dv 11715 hash2iun 11823 2cprodeq2dv 11912 dvdsval3 12135 dvdsnegb 12152 muldvds1 12160 muldvds2 12161 dvdscmul 12162 dvdsmulc 12163 dvds2ln 12168 divalgb 12269 ndvdssub 12274 gcddiv 12373 rpexp1i 12509 phiprmpw 12577 hashgcdeq 12595 pythagtriplem1 12621 pockthg 12713 infpnlem1 12715 4sqlem3 12746 imasaddfnlemg 13179 mndpfo 13303 grplmulf1o 13439 grplactcnv 13467 mulgnn0subcl 13504 mulgsubcl 13505 mulgdir 13523 issubg2m 13558 issubgrpd2 13559 nmzsubg 13579 eqgen 13596 ghmmulg 13625 ghmf1 13642 kerf1ghm 13643 conjghm 13645 srglmhm 13788 srgrmhm 13789 ringlghm 13856 ringrghm 13857 oppr1g 13877 dvdsrcl2 13894 crngunit 13906 subsubrng 14009 subrgugrp 14035 subsubrg 14040 islmod 14086 lmodvsdir 14107 lmodvsass 14108 lsssubg 14172 lss1d 14178 lidlsubg 14281 lidlsubcl 14282 expghmap 14402 mulgghm2 14403 innei 14668 iscnp4 14723 cnpnei 14724 cnnei 14737 cnconst 14739 ismeti 14851 isxmet2d 14853 elbl2ps 14897 elbl2 14898 xblpnfps 14903 xblpnf 14904 xblm 14922 blininf 14929 blssexps 14934 blssex 14935 blsscls2 14998 metss 14999 metrest 15011 metcn 15019 divcnap 15070 cdivcncfap 15109 dvply1 15270 lgslem4 15513 lgscllem 15517 lgsneg1 15535 lgsne0 15548 |
| Copyright terms: Public domain | W3C validator |