Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3expa | Unicode version |
Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3exp.1 |
Ref | Expression |
---|---|
3expa |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 | |
2 | 1 | 3exp 1192 | . 2 |
3 | 2 | imp31 254 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: ad4ant123 1205 ad4ant124 1206 ad4ant134 1207 ad4ant234 1208 3anidm23 1287 mp3an2 1315 mpd3an3 1328 rgen3 2552 moi2 2906 sbc3ie 3023 preq12bg 3752 issod 4296 wepo 4336 reuhypd 4448 funimass4 5536 fvtp1g 5692 f1imass 5741 fcof1o 5756 f1ofveu 5829 f1ocnvfv3 5830 acexmid 5840 2ndrn 6148 frecrdg 6372 oawordriexmid 6434 mapxpen 6810 findcard 6850 findcard2 6851 findcard2s 6852 ltapig 7275 ltanqi 7339 ltmnqi 7340 lt2addnq 7341 lt2mulnq 7342 prarloclemcalc 7439 genpassl 7461 genpassu 7462 prmuloc 7503 ltexprlemm 7537 ltexprlemfl 7546 ltexprlemfu 7548 lteupri 7554 ltaprg 7556 mul4 8026 add4 8055 cnegexlem2 8070 cnegexlem3 8071 2addsub 8108 addsubeq4 8109 muladd 8278 ltleadd 8340 reapmul1 8489 apreim 8497 receuap 8562 p1le 8740 lemul12b 8752 lbinf 8839 zdiv 9275 fzind 9302 fnn0ind 9303 uzss 9482 qmulcl 9571 qreccl 9576 xrlttr 9727 xaddass 9801 icc0r 9858 iooshf 9884 elfz5 9948 elfz0fzfz0 10057 fzind2 10170 ioo0 10191 ico0 10193 ioc0 10194 expnegap0 10459 expineg2 10460 mulexpzap 10491 expsubap 10499 expnbnd 10574 facndiv 10648 bccmpl 10663 bcval5 10672 bcpasc 10675 crim 10796 climshftlemg 11239 2sumeq2dv 11308 hash2iun 11416 2cprodeq2dv 11505 dvdsval3 11727 dvdsnegb 11744 muldvds1 11752 muldvds2 11753 dvdscmul 11754 dvdsmulc 11755 dvds2ln 11760 divalgb 11858 ndvdssub 11863 gcddiv 11948 rpexp1i 12082 phiprmpw 12150 hashgcdeq 12167 pythagtriplem1 12193 pockthg 12283 infpnlem1 12285 4sqlem3 12316 innei 12763 iscnp4 12818 cnpnei 12819 cnnei 12832 cnconst 12834 ismeti 12946 isxmet2d 12948 elbl2ps 12992 elbl2 12993 xblpnfps 12998 xblpnf 12999 xblm 13017 blininf 13024 blssexps 13029 blssex 13030 blsscls2 13093 metss 13094 metrest 13106 metcn 13114 divcnap 13155 cdivcncfap 13187 lgslem4 13504 lgscllem 13508 lgsneg1 13526 lgsne0 13539 |
Copyright terms: Public domain | W3C validator |