| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3expa | Unicode version | ||
| Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3expa |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . 3
| |
| 2 | 1 | 3exp 1226 |
. 2
|
| 3 | 2 | imp31 256 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: ad4ant123 1239 ad4ant124 1240 ad4ant134 1241 ad4ant234 1242 ad5ant123 1263 3anidm23 1331 mp3an2 1359 mpd3an3 1372 rgen3 2617 moi2 2984 sbc3ie 3102 2if2dc 3642 preq12bg 3851 issod 4410 wepo 4450 reuhypd 4562 funimass4 5684 fvtp1g 5847 f1imass 5898 fcof1o 5913 f1ofveu 5989 f1ocnvfv3 5990 acexmid 6000 2ndrn 6329 frecrdg 6554 oawordriexmid 6616 mapxpen 7009 findcard 7050 findcard2 7051 findcard2s 7052 ltapig 7525 ltanqi 7589 ltmnqi 7590 lt2addnq 7591 lt2mulnq 7592 prarloclemcalc 7689 genpassl 7711 genpassu 7712 prmuloc 7753 ltexprlemm 7787 ltexprlemfl 7796 ltexprlemfu 7798 lteupri 7804 ltaprg 7806 mul4 8278 add4 8307 cnegexlem2 8322 cnegexlem3 8323 2addsub 8360 addsubeq4 8361 muladd 8530 ltleadd 8593 reapmul1 8742 apreim 8750 receuap 8816 p1le 8996 lemul12b 9008 lbinf 9095 zdiv 9535 fzind 9562 fnn0ind 9563 uzss 9743 qmulcl 9832 qreccl 9837 xrlttr 9991 xaddass 10065 icc0r 10122 iooshf 10148 elfz5 10213 elfz0fzfz0 10322 fzind2 10445 ioo0 10479 ico0 10481 ioc0 10482 expnegap0 10769 expineg2 10770 mulexpzap 10801 expsubap 10809 expnbnd 10885 facndiv 10961 bccmpl 10976 bcval5 10985 bcpasc 10988 ccatrn 11144 swrdspsleq 11199 swrdccat2 11203 ccatpfx 11233 pfxccat1 11234 swrdswrd 11237 cats1un 11253 crim 11369 climshftlemg 11813 2sumeq2dv 11882 hash2iun 11990 2cprodeq2dv 12079 dvdsval3 12302 dvdsnegb 12319 muldvds1 12327 muldvds2 12328 dvdscmul 12329 dvdsmulc 12330 dvds2ln 12335 divalgb 12436 ndvdssub 12441 gcddiv 12540 rpexp1i 12676 phiprmpw 12744 hashgcdeq 12762 pythagtriplem1 12788 pockthg 12880 infpnlem1 12882 4sqlem3 12913 imasaddfnlemg 13347 mndpfo 13471 grplmulf1o 13607 grplactcnv 13635 mulgnn0subcl 13672 mulgsubcl 13673 mulgdir 13691 issubg2m 13726 issubgrpd2 13727 nmzsubg 13747 eqgen 13764 ghmmulg 13793 ghmf1 13810 kerf1ghm 13811 conjghm 13813 srglmhm 13956 srgrmhm 13957 ringlghm 14024 ringrghm 14025 oppr1g 14045 dvdsrcl2 14063 crngunit 14075 subsubrng 14178 subrgugrp 14204 subsubrg 14209 islmod 14255 lmodvsdir 14276 lmodvsass 14277 lsssubg 14341 lss1d 14347 lidlsubg 14450 lidlsubcl 14451 expghmap 14571 mulgghm2 14572 innei 14837 iscnp4 14892 cnpnei 14893 cnnei 14906 cnconst 14908 ismeti 15020 isxmet2d 15022 elbl2ps 15066 elbl2 15067 xblpnfps 15072 xblpnf 15073 xblm 15091 blininf 15098 blssexps 15103 blssex 15104 blsscls2 15167 metss 15168 metrest 15180 metcn 15188 divcnap 15239 cdivcncfap 15278 dvply1 15439 lgslem4 15682 lgscllem 15686 lgsneg1 15704 lgsne0 15717 uspgr2wlkeq 16076 |
| Copyright terms: Public domain | W3C validator |