ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifnotdc Unicode version

Theorem ifnotdc 3563
Description: Negating the first argument swaps the last two arguments of a conditional operator. (Contributed by NM, 21-Jun-2007.)
Assertion
Ref Expression
ifnotdc  |-  (DECID  ph  ->  if ( -.  ph ,  A ,  B )  =  if ( ph ,  B ,  A )
)

Proof of Theorem ifnotdc
StepHypRef Expression
1 df-dc 831 . 2  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
2 notnot 625 . . . . 5  |-  ( ph  ->  -.  -.  ph )
32iffalsed 3537 . . . 4  |-  ( ph  ->  if ( -.  ph ,  A ,  B )  =  B )
4 iftrue 3532 . . . 4  |-  ( ph  ->  if ( ph ,  B ,  A )  =  B )
53, 4eqtr4d 2207 . . 3  |-  ( ph  ->  if ( -.  ph ,  A ,  B )  =  if ( ph ,  B ,  A ) )
6 iftrue 3532 . . . 4  |-  ( -. 
ph  ->  if ( -. 
ph ,  A ,  B )  =  A )
7 iffalse 3535 . . . 4  |-  ( -. 
ph  ->  if ( ph ,  B ,  A )  =  A )
86, 7eqtr4d 2207 . . 3  |-  ( -. 
ph  ->  if ( -. 
ph ,  A ,  B )  =  if ( ph ,  B ,  A ) )
95, 8jaoi 712 . 2  |-  ( (
ph  \/  -.  ph )  ->  if ( -.  ph ,  A ,  B )  =  if ( ph ,  B ,  A ) )
101, 9sylbi 120 1  |-  (DECID  ph  ->  if ( -.  ph ,  A ,  B )  =  if ( ph ,  B ,  A )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 704  DECID wdc 830    = wceq 1349   ifcif 3527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 610  ax-in2 611  ax-io 705  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-11 1500  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529  ax-ext 2153
This theorem depends on definitions:  df-bi 116  df-dc 831  df-nf 1455  df-sb 1757  df-clab 2158  df-cleq 2164  df-clel 2167  df-if 3528
This theorem is referenced by:  lgsneg  13804  lgsdilem  13807
  Copyright terms: Public domain W3C validator