Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifnotdc | Unicode version |
Description: Negating the first argument swaps the last two arguments of a conditional operator. (Contributed by NM, 21-Jun-2007.) |
Ref | Expression |
---|---|
ifnotdc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dc 831 | . 2 DECID | |
2 | notnot 625 | . . . . 5 | |
3 | 2 | iffalsed 3537 | . . . 4 |
4 | iftrue 3532 | . . . 4 | |
5 | 3, 4 | eqtr4d 2207 | . . 3 |
6 | iftrue 3532 | . . . 4 | |
7 | iffalse 3535 | . . . 4 | |
8 | 6, 7 | eqtr4d 2207 | . . 3 |
9 | 5, 8 | jaoi 712 | . 2 |
10 | 1, 9 | sylbi 120 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wo 704 DECID wdc 830 wceq 1349 cif 3527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 610 ax-in2 611 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-11 1500 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-ext 2153 |
This theorem depends on definitions: df-bi 116 df-dc 831 df-nf 1455 df-sb 1757 df-clab 2158 df-cleq 2164 df-clel 2167 df-if 3528 |
This theorem is referenced by: lgsneg 13804 lgsdilem 13807 |
Copyright terms: Public domain | W3C validator |