ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifnotdc Unicode version

Theorem ifnotdc 3618
Description: Negating the first argument swaps the last two arguments of a conditional operator. (Contributed by NM, 21-Jun-2007.)
Assertion
Ref Expression
ifnotdc  |-  (DECID  ph  ->  if ( -.  ph ,  A ,  B )  =  if ( ph ,  B ,  A )
)

Proof of Theorem ifnotdc
StepHypRef Expression
1 df-dc 837 . 2  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
2 notnot 630 . . . . 5  |-  ( ph  ->  -.  -.  ph )
32iffalsed 3589 . . . 4  |-  ( ph  ->  if ( -.  ph ,  A ,  B )  =  B )
4 iftrue 3584 . . . 4  |-  ( ph  ->  if ( ph ,  B ,  A )  =  B )
53, 4eqtr4d 2243 . . 3  |-  ( ph  ->  if ( -.  ph ,  A ,  B )  =  if ( ph ,  B ,  A ) )
6 iftrue 3584 . . . 4  |-  ( -. 
ph  ->  if ( -. 
ph ,  A ,  B )  =  A )
7 iffalse 3587 . . . 4  |-  ( -. 
ph  ->  if ( ph ,  B ,  A )  =  A )
86, 7eqtr4d 2243 . . 3  |-  ( -. 
ph  ->  if ( -. 
ph ,  A ,  B )  =  if ( ph ,  B ,  A ) )
95, 8jaoi 718 . 2  |-  ( (
ph  \/  -.  ph )  ->  if ( -.  ph ,  A ,  B )  =  if ( ph ,  B ,  A ) )
101, 9sylbi 121 1  |-  (DECID  ph  ->  if ( -.  ph ,  A ,  B )  =  if ( ph ,  B ,  A )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 710  DECID wdc 836    = wceq 1373   ifcif 3579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-dc 837  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-if 3580
This theorem is referenced by:  lgsneg  15616  lgsdilem  15619
  Copyright terms: Public domain W3C validator