ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2iunin Unicode version

Theorem 2iunin 3932
Description: Rearrange indexed unions over intersection. (Contributed by NM, 18-Dec-2008.)
Assertion
Ref Expression
2iunin  |-  U_ x  e.  A  U_ y  e.  B  ( C  i^i  D )  =  ( U_ x  e.  A  C  i^i  U_ y  e.  B  D )
Distinct variable groups:    x, B    y, C    x, D    x, y
Allowed substitution hints:    A( x, y)    B( y)    C( x)    D( y)

Proof of Theorem 2iunin
StepHypRef Expression
1 iunin2 3929 . . . 4  |-  U_ y  e.  B  ( C  i^i  D )  =  ( C  i^i  U_ y  e.  B  D )
21a1i 9 . . 3  |-  ( x  e.  A  ->  U_ y  e.  B  ( C  i^i  D )  =  ( C  i^i  U_ y  e.  B  D )
)
32iuneq2i 3884 . 2  |-  U_ x  e.  A  U_ y  e.  B  ( C  i^i  D )  =  U_ x  e.  A  ( C  i^i  U_ y  e.  B  D )
4 iunin1 3930 . 2  |-  U_ x  e.  A  ( C  i^i  U_ y  e.  B  D )  =  (
U_ x  e.  A  C  i^i  U_ y  e.  B  D )
53, 4eqtri 2186 1  |-  U_ x  e.  A  U_ y  e.  B  ( C  i^i  D )  =  ( U_ x  e.  A  C  i^i  U_ y  e.  B  D )
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136    i^i cin 3115   U_ciun 3866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-in 3122  df-ss 3129  df-iun 3868
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator