ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunin2 Unicode version

Theorem iunin2 3977
Description: Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 3967 to recover Enderton's theorem. (Contributed by NM, 26-Mar-2004.)
Assertion
Ref Expression
iunin2  |-  U_ x  e.  A  ( B  i^i  C )  =  ( B  i^i  U_ x  e.  A  C )
Distinct variable group:    x, B
Allowed substitution hints:    A( x)    C( x)

Proof of Theorem iunin2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 r19.42v 2651 . . . 4  |-  ( E. x  e.  A  ( y  e.  B  /\  y  e.  C )  <->  ( y  e.  B  /\  E. x  e.  A  y  e.  C ) )
2 elin 3343 . . . . 5  |-  ( y  e.  ( B  i^i  C )  <->  ( y  e.  B  /\  y  e.  C ) )
32rexbii 2501 . . . 4  |-  ( E. x  e.  A  y  e.  ( B  i^i  C )  <->  E. x  e.  A  ( y  e.  B  /\  y  e.  C
) )
4 eliun 3917 . . . . 5  |-  ( y  e.  U_ x  e.  A  C  <->  E. x  e.  A  y  e.  C )
54anbi2i 457 . . . 4  |-  ( ( y  e.  B  /\  y  e.  U_ x  e.  A  C )  <->  ( y  e.  B  /\  E. x  e.  A  y  e.  C ) )
61, 3, 53bitr4i 212 . . 3  |-  ( E. x  e.  A  y  e.  ( B  i^i  C )  <->  ( y  e.  B  /\  y  e. 
U_ x  e.  A  C ) )
7 eliun 3917 . . 3  |-  ( y  e.  U_ x  e.  A  ( B  i^i  C )  <->  E. x  e.  A  y  e.  ( B  i^i  C ) )
8 elin 3343 . . 3  |-  ( y  e.  ( B  i^i  U_ x  e.  A  C
)  <->  ( y  e.  B  /\  y  e. 
U_ x  e.  A  C ) )
96, 7, 83bitr4i 212 . 2  |-  ( y  e.  U_ x  e.  A  ( B  i^i  C )  <->  y  e.  ( B  i^i  U_ x  e.  A  C )
)
109eqriv 2190 1  |-  U_ x  e.  A  ( B  i^i  C )  =  ( B  i^i  U_ x  e.  A  C )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2164   E.wrex 2473    i^i cin 3153   U_ciun 3913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-in 3160  df-iun 3915
This theorem is referenced by:  iunin1  3978  2iunin  3980  resiun1  4962  resiun2  4963
  Copyright terms: Public domain W3C validator