![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2iunin | GIF version |
Description: Rearrange indexed unions over intersection. (Contributed by NM, 18-Dec-2008.) |
Ref | Expression |
---|---|
2iunin | ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 (𝐶 ∩ 𝐷) = (∪ 𝑥 ∈ 𝐴 𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunin2 3793 | . . . 4 ⊢ ∪ 𝑦 ∈ 𝐵 (𝐶 ∩ 𝐷) = (𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷) | |
2 | 1 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∪ 𝑦 ∈ 𝐵 (𝐶 ∩ 𝐷) = (𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷)) |
3 | 2 | iuneq2i 3748 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 (𝐶 ∩ 𝐷) = ∪ 𝑥 ∈ 𝐴 (𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷) |
4 | iunin1 3794 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷) = (∪ 𝑥 ∈ 𝐴 𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷) | |
5 | 3, 4 | eqtri 2108 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 (𝐶 ∩ 𝐷) = (∪ 𝑥 ∈ 𝐴 𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷) |
Colors of variables: wff set class |
Syntax hints: = wceq 1289 ∈ wcel 1438 ∩ cin 2998 ∪ ciun 3730 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-in 3005 df-ss 3012 df-iun 3732 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |