Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2iunin | GIF version |
Description: Rearrange indexed unions over intersection. (Contributed by NM, 18-Dec-2008.) |
Ref | Expression |
---|---|
2iunin | ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 (𝐶 ∩ 𝐷) = (∪ 𝑥 ∈ 𝐴 𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunin2 3929 | . . . 4 ⊢ ∪ 𝑦 ∈ 𝐵 (𝐶 ∩ 𝐷) = (𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷) | |
2 | 1 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∪ 𝑦 ∈ 𝐵 (𝐶 ∩ 𝐷) = (𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷)) |
3 | 2 | iuneq2i 3884 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 (𝐶 ∩ 𝐷) = ∪ 𝑥 ∈ 𝐴 (𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷) |
4 | iunin1 3930 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷) = (∪ 𝑥 ∈ 𝐴 𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷) | |
5 | 3, 4 | eqtri 2186 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 (𝐶 ∩ 𝐷) = (∪ 𝑥 ∈ 𝐴 𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 ∩ cin 3115 ∪ ciun 3866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-in 3122 df-ss 3129 df-iun 3868 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |