ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2iunin GIF version

Theorem 2iunin 3983
Description: Rearrange indexed unions over intersection. (Contributed by NM, 18-Dec-2008.)
Assertion
Ref Expression
2iunin 𝑥𝐴 𝑦𝐵 (𝐶𝐷) = ( 𝑥𝐴 𝐶 𝑦𝐵 𝐷)
Distinct variable groups:   𝑥,𝐵   𝑦,𝐶   𝑥,𝐷   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem 2iunin
StepHypRef Expression
1 iunin2 3980 . . . 4 𝑦𝐵 (𝐶𝐷) = (𝐶 𝑦𝐵 𝐷)
21a1i 9 . . 3 (𝑥𝐴 𝑦𝐵 (𝐶𝐷) = (𝐶 𝑦𝐵 𝐷))
32iuneq2i 3934 . 2 𝑥𝐴 𝑦𝐵 (𝐶𝐷) = 𝑥𝐴 (𝐶 𝑦𝐵 𝐷)
4 iunin1 3981 . 2 𝑥𝐴 (𝐶 𝑦𝐵 𝐷) = ( 𝑥𝐴 𝐶 𝑦𝐵 𝐷)
53, 4eqtri 2217 1 𝑥𝐴 𝑦𝐵 (𝐶𝐷) = ( 𝑥𝐴 𝐶 𝑦𝐵 𝐷)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  cin 3156   ciun 3916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-in 3163  df-ss 3170  df-iun 3918
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator