ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2iunin GIF version

Theorem 2iunin 3955
Description: Rearrange indexed unions over intersection. (Contributed by NM, 18-Dec-2008.)
Assertion
Ref Expression
2iunin 𝑥𝐴 𝑦𝐵 (𝐶𝐷) = ( 𝑥𝐴 𝐶 𝑦𝐵 𝐷)
Distinct variable groups:   𝑥,𝐵   𝑦,𝐶   𝑥,𝐷   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem 2iunin
StepHypRef Expression
1 iunin2 3952 . . . 4 𝑦𝐵 (𝐶𝐷) = (𝐶 𝑦𝐵 𝐷)
21a1i 9 . . 3 (𝑥𝐴 𝑦𝐵 (𝐶𝐷) = (𝐶 𝑦𝐵 𝐷))
32iuneq2i 3906 . 2 𝑥𝐴 𝑦𝐵 (𝐶𝐷) = 𝑥𝐴 (𝐶 𝑦𝐵 𝐷)
4 iunin1 3953 . 2 𝑥𝐴 (𝐶 𝑦𝐵 𝐷) = ( 𝑥𝐴 𝐶 𝑦𝐵 𝐷)
53, 4eqtri 2198 1 𝑥𝐴 𝑦𝐵 (𝐶𝐷) = ( 𝑥𝐴 𝐶 𝑦𝐵 𝐷)
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2148  cin 3130   ciun 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-in 3137  df-ss 3144  df-iun 3890
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator