ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iundif2ss Unicode version

Theorem iundif2ss 4031
Description: Indexed union of class difference. Compare to theorem "De Morgan's laws" in [Enderton] p. 31. (Contributed by Jim Kingdon, 17-Aug-2018.)
Assertion
Ref Expression
iundif2ss  |-  U_ x  e.  A  ( B  \  C )  C_  ( B  \  |^|_ x  e.  A  C )
Distinct variable group:    x, B
Allowed substitution hints:    A( x)    C( x)

Proof of Theorem iundif2ss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eldif 3206 . . . . . 6  |-  ( y  e.  ( B  \  C )  <->  ( y  e.  B  /\  -.  y  e.  C ) )
21rexbii 2537 . . . . 5  |-  ( E. x  e.  A  y  e.  ( B  \  C )  <->  E. x  e.  A  ( y  e.  B  /\  -.  y  e.  C ) )
3 r19.42v 2688 . . . . 5  |-  ( E. x  e.  A  ( y  e.  B  /\  -.  y  e.  C
)  <->  ( y  e.  B  /\  E. x  e.  A  -.  y  e.  C ) )
42, 3bitri 184 . . . 4  |-  ( E. x  e.  A  y  e.  ( B  \  C )  <->  ( y  e.  B  /\  E. x  e.  A  -.  y  e.  C ) )
5 rexnalim 2519 . . . . . 6  |-  ( E. x  e.  A  -.  y  e.  C  ->  -. 
A. x  e.  A  y  e.  C )
6 vex 2802 . . . . . . 7  |-  y  e. 
_V
7 eliin 3970 . . . . . . 7  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  C  <->  A. x  e.  A  y  e.  C ) )
86, 7ax-mp 5 . . . . . 6  |-  ( y  e.  |^|_ x  e.  A  C 
<-> 
A. x  e.  A  y  e.  C )
95, 8sylnibr 681 . . . . 5  |-  ( E. x  e.  A  -.  y  e.  C  ->  -.  y  e.  |^|_ x  e.  A  C )
109anim2i 342 . . . 4  |-  ( ( y  e.  B  /\  E. x  e.  A  -.  y  e.  C )  ->  ( y  e.  B  /\  -.  y  e.  |^|_ x  e.  A  C ) )
114, 10sylbi 121 . . 3  |-  ( E. x  e.  A  y  e.  ( B  \  C )  ->  (
y  e.  B  /\  -.  y  e.  |^|_ x  e.  A  C )
)
12 eliun 3969 . . 3  |-  ( y  e.  U_ x  e.  A  ( B  \  C )  <->  E. x  e.  A  y  e.  ( B  \  C ) )
13 eldif 3206 . . 3  |-  ( y  e.  ( B  \  |^|_ x  e.  A  C
)  <->  ( y  e.  B  /\  -.  y  e.  |^|_ x  e.  A  C ) )
1411, 12, 133imtr4i 201 . 2  |-  ( y  e.  U_ x  e.  A  ( B  \  C )  ->  y  e.  ( B  \  |^|_ x  e.  A  C ) )
1514ssriv 3228 1  |-  U_ x  e.  A  ( B  \  C )  C_  ( B  \  |^|_ x  e.  A  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    e. wcel 2200   A.wral 2508   E.wrex 2509   _Vcvv 2799    \ cdif 3194    C_ wss 3197   U_ciun 3965   |^|_ciin 3966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-iun 3967  df-iin 3968
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator