ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iuneq2i Unicode version

Theorem iuneq2i 3959
Description: Equality inference for indexed union. (Contributed by NM, 22-Oct-2003.)
Hypothesis
Ref Expression
iuneq2i.1  |-  ( x  e.  A  ->  B  =  C )
Assertion
Ref Expression
iuneq2i  |-  U_ x  e.  A  B  =  U_ x  e.  A  C

Proof of Theorem iuneq2i
StepHypRef Expression
1 iuneq2 3957 . 2  |-  ( A. x  e.  A  B  =  C  ->  U_ x  e.  A  B  =  U_ x  e.  A  C
)
2 iuneq2i.1 . 2  |-  ( x  e.  A  ->  B  =  C )
31, 2mprg 2565 1  |-  U_ x  e.  A  B  =  U_ x  e.  A  C
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   U_ciun 3941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-in 3180  df-ss 3187  df-iun 3943
This theorem is referenced by:  dfiunv2  3977  iunrab  3989  iunid  3997  iunin1  4006  2iunin  4008  resiun1  4997  resiun2  4998  dfimafn2  5651  dfmpt  5780  rdgival  6491  uniqs  6703  imasplusg  13255  txbasval  14854
  Copyright terms: Public domain W3C validator