ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2moex Unicode version

Theorem 2moex 2139
Description: Double quantification with "at most one". (Contributed by NM, 3-Dec-2001.)
Assertion
Ref Expression
2moex  |-  ( E* x E. y ph  ->  A. y E* x ph )

Proof of Theorem 2moex
StepHypRef Expression
1 hbe1 1517 . . 3  |-  ( E. y ph  ->  A. y E. y ph )
21hbmo 2092 . 2  |-  ( E* x E. y ph  ->  A. y E* x E. y ph )
3 19.8a 1612 . . 3  |-  ( ph  ->  E. y ph )
43moimi 2118 . 2  |-  ( E* x E. y ph  ->  E* x ph )
52, 4alrimih 1491 1  |-  ( E* x E. y ph  ->  A. y E* x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1370   E.wex 1514   E*wmo 2054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057
This theorem is referenced by:  2rmorex  2978
  Copyright terms: Public domain W3C validator