ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2moex Unicode version

Theorem 2moex 2131
Description: Double quantification with "at most one". (Contributed by NM, 3-Dec-2001.)
Assertion
Ref Expression
2moex  |-  ( E* x E. y ph  ->  A. y E* x ph )

Proof of Theorem 2moex
StepHypRef Expression
1 hbe1 1509 . . 3  |-  ( E. y ph  ->  A. y E. y ph )
21hbmo 2084 . 2  |-  ( E* x E. y ph  ->  A. y E* x E. y ph )
3 19.8a 1604 . . 3  |-  ( ph  ->  E. y ph )
43moimi 2110 . 2  |-  ( E* x E. y ph  ->  E* x ph )
52, 4alrimih 1483 1  |-  ( E* x E. y ph  ->  A. y E* x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1362   E.wex 1506   E*wmo 2046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049
This theorem is referenced by:  2rmorex  2970
  Copyright terms: Public domain W3C validator