ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2moex Unicode version

Theorem 2moex 2105
Description: Double quantification with "at most one". (Contributed by NM, 3-Dec-2001.)
Assertion
Ref Expression
2moex  |-  ( E* x E. y ph  ->  A. y E* x ph )

Proof of Theorem 2moex
StepHypRef Expression
1 hbe1 1488 . . 3  |-  ( E. y ph  ->  A. y E. y ph )
21hbmo 2058 . 2  |-  ( E* x E. y ph  ->  A. y E* x E. y ph )
3 19.8a 1583 . . 3  |-  ( ph  ->  E. y ph )
43moimi 2084 . 2  |-  ( E* x E. y ph  ->  E* x ph )
52, 4alrimih 1462 1  |-  ( E* x E. y ph  ->  A. y E* x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1346   E.wex 1485   E*wmo 2020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023
This theorem is referenced by:  2rmorex  2936
  Copyright terms: Public domain W3C validator