| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2rmorex | Unicode version | ||
| Description: Double restricted quantification with "at most one," analogous to 2moex 2131. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| Ref | Expression |
|---|---|
| 2rmorex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2481 |
. . . . . . . 8
| |
| 2 | 1 | anbi2i 457 |
. . . . . . 7
|
| 3 | 2 | mobii 2082 |
. . . . . 6
|
| 4 | df-rmo 2483 |
. . . . . 6
| |
| 5 | 19.42v 1921 |
. . . . . . 7
| |
| 6 | 5 | mobii 2082 |
. . . . . 6
|
| 7 | 3, 4, 6 | 3bitr4i 212 |
. . . . 5
|
| 8 | 2moex 2131 |
. . . . 5
| |
| 9 | 7, 8 | sylbi 121 |
. . . 4
|
| 10 | an12 561 |
. . . . . 6
| |
| 11 | 10 | mobii 2082 |
. . . . 5
|
| 12 | 11 | albii 1484 |
. . . 4
|
| 13 | 9, 12 | sylib 122 |
. . 3
|
| 14 | moanimv 2120 |
. . . 4
| |
| 15 | 14 | albii 1484 |
. . 3
|
| 16 | 13, 15 | sylib 122 |
. 2
|
| 17 | df-ral 2480 |
. . 3
| |
| 18 | df-rmo 2483 |
. . . . 5
| |
| 19 | 18 | imbi2i 226 |
. . . 4
|
| 20 | 19 | albii 1484 |
. . 3
|
| 21 | 17, 20 | bitri 184 |
. 2
|
| 22 | 16, 21 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-ral 2480 df-rex 2481 df-rmo 2483 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |