Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2rmorex | Unicode version |
Description: Double restricted quantification with "at most one," analogous to 2moex 2100. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
Ref | Expression |
---|---|
2rmorex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2450 | . . . . . . . 8 | |
2 | 1 | anbi2i 453 | . . . . . . 7 |
3 | 2 | mobii 2051 | . . . . . 6 |
4 | df-rmo 2452 | . . . . . 6 | |
5 | 19.42v 1894 | . . . . . . 7 | |
6 | 5 | mobii 2051 | . . . . . 6 |
7 | 3, 4, 6 | 3bitr4i 211 | . . . . 5 |
8 | 2moex 2100 | . . . . 5 | |
9 | 7, 8 | sylbi 120 | . . . 4 |
10 | an12 551 | . . . . . 6 | |
11 | 10 | mobii 2051 | . . . . 5 |
12 | 11 | albii 1458 | . . . 4 |
13 | 9, 12 | sylib 121 | . . 3 |
14 | moanimv 2089 | . . . 4 | |
15 | 14 | albii 1458 | . . 3 |
16 | 13, 15 | sylib 121 | . 2 |
17 | df-ral 2449 | . . 3 | |
18 | df-rmo 2452 | . . . . 5 | |
19 | 18 | imbi2i 225 | . . . 4 |
20 | 19 | albii 1458 | . . 3 |
21 | 17, 20 | bitri 183 | . 2 |
22 | 16, 21 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1341 wex 1480 wmo 2015 wcel 2136 wral 2444 wrex 2445 wrmo 2447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-ral 2449 df-rex 2450 df-rmo 2452 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |