ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2rmorex Unicode version

Theorem 2rmorex 2970
Description: Double restricted quantification with "at most one," analogous to 2moex 2131. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Assertion
Ref Expression
2rmorex  |-  ( E* x  e.  A  E. y  e.  B  ph  ->  A. y  e.  B  E* x  e.  A  ph )
Distinct variable groups:    y, A    x, B    x, y
Allowed substitution hints:    ph( x, y)    A( x)    B( y)

Proof of Theorem 2rmorex
StepHypRef Expression
1 df-rex 2481 . . . . . . . 8  |-  ( E. y  e.  B  ph  <->  E. y ( y  e.  B  /\  ph )
)
21anbi2i 457 . . . . . . 7  |-  ( ( x  e.  A  /\  E. y  e.  B  ph ) 
<->  ( x  e.  A  /\  E. y ( y  e.  B  /\  ph ) ) )
32mobii 2082 . . . . . 6  |-  ( E* x ( x  e.  A  /\  E. y  e.  B  ph )  <->  E* x
( x  e.  A  /\  E. y ( y  e.  B  /\  ph ) ) )
4 df-rmo 2483 . . . . . 6  |-  ( E* x  e.  A  E. y  e.  B  ph  <->  E* x
( x  e.  A  /\  E. y  e.  B  ph ) )
5 19.42v 1921 . . . . . . 7  |-  ( E. y ( x  e.  A  /\  ( y  e.  B  /\  ph ) )  <->  ( x  e.  A  /\  E. y
( y  e.  B  /\  ph ) ) )
65mobii 2082 . . . . . 6  |-  ( E* x E. y ( x  e.  A  /\  ( y  e.  B  /\  ph ) )  <->  E* x
( x  e.  A  /\  E. y ( y  e.  B  /\  ph ) ) )
73, 4, 63bitr4i 212 . . . . 5  |-  ( E* x  e.  A  E. y  e.  B  ph  <->  E* x E. y ( x  e.  A  /\  ( y  e.  B  /\  ph ) ) )
8 2moex 2131 . . . . 5  |-  ( E* x E. y ( x  e.  A  /\  ( y  e.  B  /\  ph ) )  ->  A. y E* x ( x  e.  A  /\  ( y  e.  B  /\  ph ) ) )
97, 8sylbi 121 . . . 4  |-  ( E* x  e.  A  E. y  e.  B  ph  ->  A. y E* x ( x  e.  A  /\  ( y  e.  B  /\  ph ) ) )
10 an12 561 . . . . . 6  |-  ( ( x  e.  A  /\  ( y  e.  B  /\  ph ) )  <->  ( y  e.  B  /\  (
x  e.  A  /\  ph ) ) )
1110mobii 2082 . . . . 5  |-  ( E* x ( x  e.  A  /\  ( y  e.  B  /\  ph ) )  <->  E* x
( y  e.  B  /\  ( x  e.  A  /\  ph ) ) )
1211albii 1484 . . . 4  |-  ( A. y E* x ( x  e.  A  /\  (
y  e.  B  /\  ph ) )  <->  A. y E* x ( y  e.  B  /\  ( x  e.  A  /\  ph ) ) )
139, 12sylib 122 . . 3  |-  ( E* x  e.  A  E. y  e.  B  ph  ->  A. y E* x ( y  e.  B  /\  ( x  e.  A  /\  ph ) ) )
14 moanimv 2120 . . . 4  |-  ( E* x ( y  e.  B  /\  ( x  e.  A  /\  ph ) )  <->  ( y  e.  B  ->  E* x
( x  e.  A  /\  ph ) ) )
1514albii 1484 . . 3  |-  ( A. y E* x ( y  e.  B  /\  (
x  e.  A  /\  ph ) )  <->  A. y
( y  e.  B  ->  E* x ( x  e.  A  /\  ph ) ) )
1613, 15sylib 122 . 2  |-  ( E* x  e.  A  E. y  e.  B  ph  ->  A. y ( y  e.  B  ->  E* x
( x  e.  A  /\  ph ) ) )
17 df-ral 2480 . . 3  |-  ( A. y  e.  B  E* x  e.  A  ph  <->  A. y
( y  e.  B  ->  E* x  e.  A  ph ) )
18 df-rmo 2483 . . . . 5  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
1918imbi2i 226 . . . 4  |-  ( ( y  e.  B  ->  E* x  e.  A  ph )  <->  ( y  e.  B  ->  E* x
( x  e.  A  /\  ph ) ) )
2019albii 1484 . . 3  |-  ( A. y ( y  e.  B  ->  E* x  e.  A  ph )  <->  A. y
( y  e.  B  ->  E* x ( x  e.  A  /\  ph ) ) )
2117, 20bitri 184 . 2  |-  ( A. y  e.  B  E* x  e.  A  ph  <->  A. y
( y  e.  B  ->  E* x ( x  e.  A  /\  ph ) ) )
2216, 21sylibr 134 1  |-  ( E* x  e.  A  E. y  e.  B  ph  ->  A. y  e.  B  E* x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1362   E.wex 1506   E*wmo 2046    e. wcel 2167   A.wral 2475   E.wrex 2476   E*wrmo 2478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-ral 2480  df-rex 2481  df-rmo 2483
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator