Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2rmorex | Unicode version |
Description: Double restricted quantification with "at most one," analogous to 2moex 2105. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
Ref | Expression |
---|---|
2rmorex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2454 | . . . . . . . 8 | |
2 | 1 | anbi2i 454 | . . . . . . 7 |
3 | 2 | mobii 2056 | . . . . . 6 |
4 | df-rmo 2456 | . . . . . 6 | |
5 | 19.42v 1899 | . . . . . . 7 | |
6 | 5 | mobii 2056 | . . . . . 6 |
7 | 3, 4, 6 | 3bitr4i 211 | . . . . 5 |
8 | 2moex 2105 | . . . . 5 | |
9 | 7, 8 | sylbi 120 | . . . 4 |
10 | an12 556 | . . . . . 6 | |
11 | 10 | mobii 2056 | . . . . 5 |
12 | 11 | albii 1463 | . . . 4 |
13 | 9, 12 | sylib 121 | . . 3 |
14 | moanimv 2094 | . . . 4 | |
15 | 14 | albii 1463 | . . 3 |
16 | 13, 15 | sylib 121 | . 2 |
17 | df-ral 2453 | . . 3 | |
18 | df-rmo 2456 | . . . . 5 | |
19 | 18 | imbi2i 225 | . . . 4 |
20 | 19 | albii 1463 | . . 3 |
21 | 17, 20 | bitri 183 | . 2 |
22 | 16, 21 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1346 wex 1485 wmo 2020 wcel 2141 wral 2448 wrex 2449 wrmo 2451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-ral 2453 df-rex 2454 df-rmo 2456 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |