ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2rmorex Unicode version

Theorem 2rmorex 2843
Description: Double restricted quantification with "at most one," analogous to 2moex 2046. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Assertion
Ref Expression
2rmorex  |-  ( E* x  e.  A  E. y  e.  B  ph  ->  A. y  e.  B  E* x  e.  A  ph )
Distinct variable groups:    y, A    x, B    x, y
Allowed substitution hints:    ph( x, y)    A( x)    B( y)

Proof of Theorem 2rmorex
StepHypRef Expression
1 df-rex 2381 . . . . . . . 8  |-  ( E. y  e.  B  ph  <->  E. y ( y  e.  B  /\  ph )
)
21anbi2i 448 . . . . . . 7  |-  ( ( x  e.  A  /\  E. y  e.  B  ph ) 
<->  ( x  e.  A  /\  E. y ( y  e.  B  /\  ph ) ) )
32mobii 1997 . . . . . 6  |-  ( E* x ( x  e.  A  /\  E. y  e.  B  ph )  <->  E* x
( x  e.  A  /\  E. y ( y  e.  B  /\  ph ) ) )
4 df-rmo 2383 . . . . . 6  |-  ( E* x  e.  A  E. y  e.  B  ph  <->  E* x
( x  e.  A  /\  E. y  e.  B  ph ) )
5 19.42v 1845 . . . . . . 7  |-  ( E. y ( x  e.  A  /\  ( y  e.  B  /\  ph ) )  <->  ( x  e.  A  /\  E. y
( y  e.  B  /\  ph ) ) )
65mobii 1997 . . . . . 6  |-  ( E* x E. y ( x  e.  A  /\  ( y  e.  B  /\  ph ) )  <->  E* x
( x  e.  A  /\  E. y ( y  e.  B  /\  ph ) ) )
73, 4, 63bitr4i 211 . . . . 5  |-  ( E* x  e.  A  E. y  e.  B  ph  <->  E* x E. y ( x  e.  A  /\  ( y  e.  B  /\  ph ) ) )
8 2moex 2046 . . . . 5  |-  ( E* x E. y ( x  e.  A  /\  ( y  e.  B  /\  ph ) )  ->  A. y E* x ( x  e.  A  /\  ( y  e.  B  /\  ph ) ) )
97, 8sylbi 120 . . . 4  |-  ( E* x  e.  A  E. y  e.  B  ph  ->  A. y E* x ( x  e.  A  /\  ( y  e.  B  /\  ph ) ) )
10 an12 531 . . . . . 6  |-  ( ( x  e.  A  /\  ( y  e.  B  /\  ph ) )  <->  ( y  e.  B  /\  (
x  e.  A  /\  ph ) ) )
1110mobii 1997 . . . . 5  |-  ( E* x ( x  e.  A  /\  ( y  e.  B  /\  ph ) )  <->  E* x
( y  e.  B  /\  ( x  e.  A  /\  ph ) ) )
1211albii 1414 . . . 4  |-  ( A. y E* x ( x  e.  A  /\  (
y  e.  B  /\  ph ) )  <->  A. y E* x ( y  e.  B  /\  ( x  e.  A  /\  ph ) ) )
139, 12sylib 121 . . 3  |-  ( E* x  e.  A  E. y  e.  B  ph  ->  A. y E* x ( y  e.  B  /\  ( x  e.  A  /\  ph ) ) )
14 moanimv 2035 . . . 4  |-  ( E* x ( y  e.  B  /\  ( x  e.  A  /\  ph ) )  <->  ( y  e.  B  ->  E* x
( x  e.  A  /\  ph ) ) )
1514albii 1414 . . 3  |-  ( A. y E* x ( y  e.  B  /\  (
x  e.  A  /\  ph ) )  <->  A. y
( y  e.  B  ->  E* x ( x  e.  A  /\  ph ) ) )
1613, 15sylib 121 . 2  |-  ( E* x  e.  A  E. y  e.  B  ph  ->  A. y ( y  e.  B  ->  E* x
( x  e.  A  /\  ph ) ) )
17 df-ral 2380 . . 3  |-  ( A. y  e.  B  E* x  e.  A  ph  <->  A. y
( y  e.  B  ->  E* x  e.  A  ph ) )
18 df-rmo 2383 . . . . 5  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
1918imbi2i 225 . . . 4  |-  ( ( y  e.  B  ->  E* x  e.  A  ph )  <->  ( y  e.  B  ->  E* x
( x  e.  A  /\  ph ) ) )
2019albii 1414 . . 3  |-  ( A. y ( y  e.  B  ->  E* x  e.  A  ph )  <->  A. y
( y  e.  B  ->  E* x ( x  e.  A  /\  ph ) ) )
2117, 20bitri 183 . 2  |-  ( A. y  e.  B  E* x  e.  A  ph  <->  A. y
( y  e.  B  ->  E* x ( x  e.  A  /\  ph ) ) )
2216, 21sylibr 133 1  |-  ( E* x  e.  A  E. y  e.  B  ph  ->  A. y  e.  B  E* x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1297   E.wex 1436    e. wcel 1448   E*wmo 1961   A.wral 2375   E.wrex 2376   E*wrmo 2378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-ral 2380  df-rex 2381  df-rmo 2383
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator