ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euexex Unicode version

Theorem euexex 2099
Description: Existential uniqueness and "at most one" double quantification. (Contributed by Jim Kingdon, 28-Dec-2018.)
Hypothesis
Ref Expression
euexex.1  |-  F/ y
ph
Assertion
Ref Expression
euexex  |-  ( ( E! x ph  /\  A. x E* y ps )  ->  E* y E. x ( ph  /\  ps ) )

Proof of Theorem euexex
StepHypRef Expression
1 eu5 2061 . . 3  |-  ( E! x ph  <->  ( E. x ph  /\  E* x ph ) )
2 nfmo1 2026 . . . . . 6  |-  F/ x E* x ph
3 nfa1 1529 . . . . . . 7  |-  F/ x A. x E* y ps
4 nfe1 1484 . . . . . . . 8  |-  F/ x E. x ( ph  /\  ps )
54nfmo 2034 . . . . . . 7  |-  F/ x E* y E. x (
ph  /\  ps )
63, 5nfim 1560 . . . . . 6  |-  F/ x
( A. x E* y ps  ->  E* y E. x ( ph  /\ 
ps ) )
72, 6nfim 1560 . . . . 5  |-  F/ x
( E* x ph  ->  ( A. x E* y ps  ->  E* y E. x ( ph  /\ 
ps ) ) )
8 euexex.1 . . . . . . 7  |-  F/ y
ph
98nfmo 2034 . . . . . . 7  |-  F/ y E* x ph
10 mopick 2092 . . . . . . . . 9  |-  ( ( E* x ph  /\  E. x ( ph  /\  ps ) )  ->  ( ph  ->  ps ) )
1110ex 114 . . . . . . . 8  |-  ( E* x ph  ->  ( E. x ( ph  /\  ps )  ->  ( ph  ->  ps ) ) )
1211com3r 79 . . . . . . 7  |-  ( ph  ->  ( E* x ph  ->  ( E. x (
ph  /\  ps )  ->  ps ) ) )
138, 9, 12alrimd 1598 . . . . . 6  |-  ( ph  ->  ( E* x ph  ->  A. y ( E. x ( ph  /\  ps )  ->  ps )
) )
14 moim 2078 . . . . . . 7  |-  ( A. y ( E. x
( ph  /\  ps )  ->  ps )  ->  ( E* y ps  ->  E* y E. x ( ph  /\ 
ps ) ) )
1514spsd 1526 . . . . . 6  |-  ( A. y ( E. x
( ph  /\  ps )  ->  ps )  ->  ( A. x E* y ps 
->  E* y E. x
( ph  /\  ps )
) )
1613, 15syl6 33 . . . . 5  |-  ( ph  ->  ( E* x ph  ->  ( A. x E* y ps  ->  E* y E. x ( ph  /\ 
ps ) ) ) )
177, 16exlimi 1582 . . . 4  |-  ( E. x ph  ->  ( E* x ph  ->  ( A. x E* y ps 
->  E* y E. x
( ph  /\  ps )
) ) )
1817imp 123 . . 3  |-  ( ( E. x ph  /\  E* x ph )  -> 
( A. x E* y ps  ->  E* y E. x ( ph  /\ 
ps ) ) )
191, 18sylbi 120 . 2  |-  ( E! x ph  ->  ( A. x E* y ps 
->  E* y E. x
( ph  /\  ps )
) )
2019imp 123 1  |-  ( ( E! x ph  /\  A. x E* y ps )  ->  E* y E. x ( ph  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1341   F/wnf 1448   E.wex 1480   E!weu 2014   E*wmo 2015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018
This theorem is referenced by:  mosubt  2903  funco  5228
  Copyright terms: Public domain W3C validator