Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > euexex | Unicode version |
Description: Existential uniqueness and "at most one" double quantification. (Contributed by Jim Kingdon, 28-Dec-2018.) |
Ref | Expression |
---|---|
euexex.1 |
Ref | Expression |
---|---|
euexex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu5 2066 | . . 3 | |
2 | nfmo1 2031 | . . . . . 6 | |
3 | nfa1 1534 | . . . . . . 7 | |
4 | nfe1 1489 | . . . . . . . 8 | |
5 | 4 | nfmo 2039 | . . . . . . 7 |
6 | 3, 5 | nfim 1565 | . . . . . 6 |
7 | 2, 6 | nfim 1565 | . . . . 5 |
8 | euexex.1 | . . . . . . 7 | |
9 | 8 | nfmo 2039 | . . . . . . 7 |
10 | mopick 2097 | . . . . . . . . 9 | |
11 | 10 | ex 114 | . . . . . . . 8 |
12 | 11 | com3r 79 | . . . . . . 7 |
13 | 8, 9, 12 | alrimd 1603 | . . . . . 6 |
14 | moim 2083 | . . . . . . 7 | |
15 | 14 | spsd 1531 | . . . . . 6 |
16 | 13, 15 | syl6 33 | . . . . 5 |
17 | 7, 16 | exlimi 1587 | . . . 4 |
18 | 17 | imp 123 | . . 3 |
19 | 1, 18 | sylbi 120 | . 2 |
20 | 19 | imp 123 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1346 wnf 1453 wex 1485 weu 2019 wmo 2020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 |
This theorem is referenced by: mosubt 2907 funco 5238 |
Copyright terms: Public domain | W3C validator |