Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > euexex | Unicode version |
Description: Existential uniqueness and "at most one" double quantification. (Contributed by Jim Kingdon, 28-Dec-2018.) |
Ref | Expression |
---|---|
euexex.1 |
Ref | Expression |
---|---|
euexex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu5 2061 | . . 3 | |
2 | nfmo1 2026 | . . . . . 6 | |
3 | nfa1 1529 | . . . . . . 7 | |
4 | nfe1 1484 | . . . . . . . 8 | |
5 | 4 | nfmo 2034 | . . . . . . 7 |
6 | 3, 5 | nfim 1560 | . . . . . 6 |
7 | 2, 6 | nfim 1560 | . . . . 5 |
8 | euexex.1 | . . . . . . 7 | |
9 | 8 | nfmo 2034 | . . . . . . 7 |
10 | mopick 2092 | . . . . . . . . 9 | |
11 | 10 | ex 114 | . . . . . . . 8 |
12 | 11 | com3r 79 | . . . . . . 7 |
13 | 8, 9, 12 | alrimd 1598 | . . . . . 6 |
14 | moim 2078 | . . . . . . 7 | |
15 | 14 | spsd 1526 | . . . . . 6 |
16 | 13, 15 | syl6 33 | . . . . 5 |
17 | 7, 16 | exlimi 1582 | . . . 4 |
18 | 17 | imp 123 | . . 3 |
19 | 1, 18 | sylbi 120 | . 2 |
20 | 19 | imp 123 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1341 wnf 1448 wex 1480 weu 2014 wmo 2015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 |
This theorem is referenced by: mosubt 2903 funco 5228 |
Copyright terms: Public domain | W3C validator |