ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euexex Unicode version

Theorem euexex 2104
Description: Existential uniqueness and "at most one" double quantification. (Contributed by Jim Kingdon, 28-Dec-2018.)
Hypothesis
Ref Expression
euexex.1  |-  F/ y
ph
Assertion
Ref Expression
euexex  |-  ( ( E! x ph  /\  A. x E* y ps )  ->  E* y E. x ( ph  /\  ps ) )

Proof of Theorem euexex
StepHypRef Expression
1 eu5 2066 . . 3  |-  ( E! x ph  <->  ( E. x ph  /\  E* x ph ) )
2 nfmo1 2031 . . . . . 6  |-  F/ x E* x ph
3 nfa1 1534 . . . . . . 7  |-  F/ x A. x E* y ps
4 nfe1 1489 . . . . . . . 8  |-  F/ x E. x ( ph  /\  ps )
54nfmo 2039 . . . . . . 7  |-  F/ x E* y E. x (
ph  /\  ps )
63, 5nfim 1565 . . . . . 6  |-  F/ x
( A. x E* y ps  ->  E* y E. x ( ph  /\ 
ps ) )
72, 6nfim 1565 . . . . 5  |-  F/ x
( E* x ph  ->  ( A. x E* y ps  ->  E* y E. x ( ph  /\ 
ps ) ) )
8 euexex.1 . . . . . . 7  |-  F/ y
ph
98nfmo 2039 . . . . . . 7  |-  F/ y E* x ph
10 mopick 2097 . . . . . . . . 9  |-  ( ( E* x ph  /\  E. x ( ph  /\  ps ) )  ->  ( ph  ->  ps ) )
1110ex 114 . . . . . . . 8  |-  ( E* x ph  ->  ( E. x ( ph  /\  ps )  ->  ( ph  ->  ps ) ) )
1211com3r 79 . . . . . . 7  |-  ( ph  ->  ( E* x ph  ->  ( E. x (
ph  /\  ps )  ->  ps ) ) )
138, 9, 12alrimd 1603 . . . . . 6  |-  ( ph  ->  ( E* x ph  ->  A. y ( E. x ( ph  /\  ps )  ->  ps )
) )
14 moim 2083 . . . . . . 7  |-  ( A. y ( E. x
( ph  /\  ps )  ->  ps )  ->  ( E* y ps  ->  E* y E. x ( ph  /\ 
ps ) ) )
1514spsd 1531 . . . . . 6  |-  ( A. y ( E. x
( ph  /\  ps )  ->  ps )  ->  ( A. x E* y ps 
->  E* y E. x
( ph  /\  ps )
) )
1613, 15syl6 33 . . . . 5  |-  ( ph  ->  ( E* x ph  ->  ( A. x E* y ps  ->  E* y E. x ( ph  /\ 
ps ) ) ) )
177, 16exlimi 1587 . . . 4  |-  ( E. x ph  ->  ( E* x ph  ->  ( A. x E* y ps 
->  E* y E. x
( ph  /\  ps )
) ) )
1817imp 123 . . 3  |-  ( ( E. x ph  /\  E* x ph )  -> 
( A. x E* y ps  ->  E* y E. x ( ph  /\ 
ps ) ) )
191, 18sylbi 120 . 2  |-  ( E! x ph  ->  ( A. x E* y ps 
->  E* y E. x
( ph  /\  ps )
) )
2019imp 123 1  |-  ( ( E! x ph  /\  A. x E* y ps )  ->  E* y E. x ( ph  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1346   F/wnf 1453   E.wex 1485   E!weu 2019   E*wmo 2020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023
This theorem is referenced by:  mosubt  2907  funco  5238
  Copyright terms: Public domain W3C validator