Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2moex | GIF version |
Description: Double quantification with "at most one". (Contributed by NM, 3-Dec-2001.) |
Ref | Expression |
---|---|
2moex | ⊢ (∃*𝑥∃𝑦𝜑 → ∀𝑦∃*𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbe1 1488 | . . 3 ⊢ (∃𝑦𝜑 → ∀𝑦∃𝑦𝜑) | |
2 | 1 | hbmo 2058 | . 2 ⊢ (∃*𝑥∃𝑦𝜑 → ∀𝑦∃*𝑥∃𝑦𝜑) |
3 | 19.8a 1583 | . . 3 ⊢ (𝜑 → ∃𝑦𝜑) | |
4 | 3 | moimi 2084 | . 2 ⊢ (∃*𝑥∃𝑦𝜑 → ∃*𝑥𝜑) |
5 | 2, 4 | alrimih 1462 | 1 ⊢ (∃*𝑥∃𝑦𝜑 → ∀𝑦∃*𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 ∃wex 1485 ∃*wmo 2020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 |
This theorem is referenced by: 2rmorex 2936 |
Copyright terms: Public domain | W3C validator |