ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2moex GIF version

Theorem 2moex 2131
Description: Double quantification with "at most one". (Contributed by NM, 3-Dec-2001.)
Assertion
Ref Expression
2moex (∃*𝑥𝑦𝜑 → ∀𝑦∃*𝑥𝜑)

Proof of Theorem 2moex
StepHypRef Expression
1 hbe1 1509 . . 3 (∃𝑦𝜑 → ∀𝑦𝑦𝜑)
21hbmo 2084 . 2 (∃*𝑥𝑦𝜑 → ∀𝑦∃*𝑥𝑦𝜑)
3 19.8a 1604 . . 3 (𝜑 → ∃𝑦𝜑)
43moimi 2110 . 2 (∃*𝑥𝑦𝜑 → ∃*𝑥𝜑)
52, 4alrimih 1483 1 (∃*𝑥𝑦𝜑 → ∀𝑦∃*𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362  wex 1506  ∃*wmo 2046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049
This theorem is referenced by:  2rmorex  2970
  Copyright terms: Public domain W3C validator