ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2moex GIF version

Theorem 2moex 2100
Description: Double quantification with "at most one". (Contributed by NM, 3-Dec-2001.)
Assertion
Ref Expression
2moex (∃*𝑥𝑦𝜑 → ∀𝑦∃*𝑥𝜑)

Proof of Theorem 2moex
StepHypRef Expression
1 hbe1 1483 . . 3 (∃𝑦𝜑 → ∀𝑦𝑦𝜑)
21hbmo 2053 . 2 (∃*𝑥𝑦𝜑 → ∀𝑦∃*𝑥𝑦𝜑)
3 19.8a 1578 . . 3 (𝜑 → ∃𝑦𝜑)
43moimi 2079 . 2 (∃*𝑥𝑦𝜑 → ∃*𝑥𝜑)
52, 4alrimih 1457 1 (∃*𝑥𝑦𝜑 → ∀𝑦∃*𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341  wex 1480  ∃*wmo 2015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018
This theorem is referenced by:  2rmorex  2932
  Copyright terms: Public domain W3C validator