ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgsubdir Unicode version

Theorem mulgsubdir 13235
Description: Distribution of group multiples over subtraction for group elements, subdir 8407 analog. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgsubdir.b  |-  B  =  ( Base `  G
)
mulgsubdir.t  |-  .x.  =  (.g
`  G )
mulgsubdir.d  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
mulgsubdir  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  -  N )  .x.  X )  =  ( ( M  .x.  X
)  .-  ( N  .x.  X ) ) )

Proof of Theorem mulgsubdir
StepHypRef Expression
1 znegcl 9351 . . 3  |-  ( N  e.  ZZ  ->  -u N  e.  ZZ )
2 mulgsubdir.b . . . 4  |-  B  =  ( Base `  G
)
3 mulgsubdir.t . . . 4  |-  .x.  =  (.g
`  G )
4 eqid 2193 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
52, 3, 4mulgdir 13227 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  -u N  e.  ZZ  /\  X  e.  B ) )  ->  ( ( M  +  -u N ) 
.x.  X )  =  ( ( M  .x.  X ) ( +g  `  G ) ( -u N  .x.  X ) ) )
61, 5syl3anr2 1302 . 2  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  +  -u N ) 
.x.  X )  =  ( ( M  .x.  X ) ( +g  `  G ) ( -u N  .x.  X ) ) )
7 simpr1 1005 . . . . 5  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  M  e.  ZZ )
87zcnd 9443 . . . 4  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  M  e.  CC )
9 simpr2 1006 . . . . 5  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  N  e.  ZZ )
109zcnd 9443 . . . 4  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  N  e.  CC )
118, 10negsubd 8338 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  +  -u N )  =  ( M  -  N
) )
1211oveq1d 5934 . 2  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  +  -u N ) 
.x.  X )  =  ( ( M  -  N )  .x.  X
) )
13 eqid 2193 . . . . . 6  |-  ( invg `  G )  =  ( invg `  G )
142, 3, 13mulgneg 13213 . . . . 5  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( ( invg `  G ) `
 ( N  .x.  X ) ) )
15143adant3r1 1214 . . . 4  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( -u N  .x.  X )  =  ( ( invg `  G ) `  ( N  .x.  X ) ) )
1615oveq2d 5935 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  .x.  X ) ( +g  `  G ) ( -u N  .x.  X ) )  =  ( ( M  .x.  X ) ( +g  `  G ) ( ( invg `  G
) `  ( N  .x.  X ) ) ) )
172, 3mulgcl 13212 . . . . 5  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  X  e.  B )  ->  ( M  .x.  X )  e.  B )
18173adant3r2 1215 . . . 4  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  .x.  X )  e.  B
)
192, 3mulgcl 13212 . . . . 5  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
20193adant3r1 1214 . . . 4  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( N  .x.  X )  e.  B
)
21 mulgsubdir.d . . . . 5  |-  .-  =  ( -g `  G )
222, 4, 13, 21grpsubval 13121 . . . 4  |-  ( ( ( M  .x.  X
)  e.  B  /\  ( N  .x.  X )  e.  B )  -> 
( ( M  .x.  X )  .-  ( N  .x.  X ) )  =  ( ( M 
.x.  X ) ( +g  `  G ) ( ( invg `  G ) `  ( N  .x.  X ) ) ) )
2318, 20, 22syl2anc 411 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  .x.  X )  .-  ( N  .x.  X ) )  =  ( ( M  .x.  X ) ( +g  `  G
) ( ( invg `  G ) `
 ( N  .x.  X ) ) ) )
2416, 23eqtr4d 2229 . 2  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  .x.  X ) ( +g  `  G ) ( -u N  .x.  X ) )  =  ( ( M  .x.  X )  .-  ( N  .x.  X ) ) )
256, 12, 243eqtr3d 2234 1  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  -  N )  .x.  X )  =  ( ( M  .x.  X
)  .-  ( N  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   ` cfv 5255  (class class class)co 5919    + caddc 7877    - cmin 8192   -ucneg 8193   ZZcz 9320   Basecbs 12621   +g cplusg 12698   Grpcgrp 13075   invgcminusg 13076   -gcsg 13077  .gcmg 13192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078  df-seqfrec 10522  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-sbg 13080  df-mulg 13193
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator