ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgsubdir Unicode version

Theorem mulgsubdir 13440
Description: Distribution of group multiples over subtraction for group elements, subdir 8457 analog. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgsubdir.b  |-  B  =  ( Base `  G
)
mulgsubdir.t  |-  .x.  =  (.g
`  G )
mulgsubdir.d  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
mulgsubdir  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  -  N )  .x.  X )  =  ( ( M  .x.  X
)  .-  ( N  .x.  X ) ) )

Proof of Theorem mulgsubdir
StepHypRef Expression
1 znegcl 9402 . . 3  |-  ( N  e.  ZZ  ->  -u N  e.  ZZ )
2 mulgsubdir.b . . . 4  |-  B  =  ( Base `  G
)
3 mulgsubdir.t . . . 4  |-  .x.  =  (.g
`  G )
4 eqid 2204 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
52, 3, 4mulgdir 13432 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  -u N  e.  ZZ  /\  X  e.  B ) )  ->  ( ( M  +  -u N ) 
.x.  X )  =  ( ( M  .x.  X ) ( +g  `  G ) ( -u N  .x.  X ) ) )
61, 5syl3anr2 1302 . 2  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  +  -u N ) 
.x.  X )  =  ( ( M  .x.  X ) ( +g  `  G ) ( -u N  .x.  X ) ) )
7 simpr1 1005 . . . . 5  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  M  e.  ZZ )
87zcnd 9495 . . . 4  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  M  e.  CC )
9 simpr2 1006 . . . . 5  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  N  e.  ZZ )
109zcnd 9495 . . . 4  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  N  e.  CC )
118, 10negsubd 8388 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  +  -u N )  =  ( M  -  N
) )
1211oveq1d 5958 . 2  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  +  -u N ) 
.x.  X )  =  ( ( M  -  N )  .x.  X
) )
13 eqid 2204 . . . . . 6  |-  ( invg `  G )  =  ( invg `  G )
142, 3, 13mulgneg 13418 . . . . 5  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( ( invg `  G ) `
 ( N  .x.  X ) ) )
15143adant3r1 1214 . . . 4  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( -u N  .x.  X )  =  ( ( invg `  G ) `  ( N  .x.  X ) ) )
1615oveq2d 5959 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  .x.  X ) ( +g  `  G ) ( -u N  .x.  X ) )  =  ( ( M  .x.  X ) ( +g  `  G ) ( ( invg `  G
) `  ( N  .x.  X ) ) ) )
172, 3mulgcl 13417 . . . . 5  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  X  e.  B )  ->  ( M  .x.  X )  e.  B )
18173adant3r2 1215 . . . 4  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  .x.  X )  e.  B
)
192, 3mulgcl 13417 . . . . 5  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
20193adant3r1 1214 . . . 4  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( N  .x.  X )  e.  B
)
21 mulgsubdir.d . . . . 5  |-  .-  =  ( -g `  G )
222, 4, 13, 21grpsubval 13320 . . . 4  |-  ( ( ( M  .x.  X
)  e.  B  /\  ( N  .x.  X )  e.  B )  -> 
( ( M  .x.  X )  .-  ( N  .x.  X ) )  =  ( ( M 
.x.  X ) ( +g  `  G ) ( ( invg `  G ) `  ( N  .x.  X ) ) ) )
2318, 20, 22syl2anc 411 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  .x.  X )  .-  ( N  .x.  X ) )  =  ( ( M  .x.  X ) ( +g  `  G
) ( ( invg `  G ) `
 ( N  .x.  X ) ) ) )
2416, 23eqtr4d 2240 . 2  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  .x.  X ) ( +g  `  G ) ( -u N  .x.  X ) )  =  ( ( M  .x.  X )  .-  ( N  .x.  X ) ) )
256, 12, 243eqtr3d 2245 1  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  -  N )  .x.  X )  =  ( ( M  .x.  X
)  .-  ( N  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1372    e. wcel 2175   ` cfv 5270  (class class class)co 5943    + caddc 7927    - cmin 8242   -ucneg 8243   ZZcz 9371   Basecbs 12774   +g cplusg 12851   Grpcgrp 13274   invgcminusg 13275   -gcsg 13276  .gcmg 13397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-2 9094  df-n0 9295  df-z 9372  df-uz 9648  df-fz 10130  df-seqfrec 10591  df-ndx 12777  df-slot 12778  df-base 12780  df-plusg 12864  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-grp 13277  df-minusg 13278  df-sbg 13279  df-mulg 13398
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator