| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adant3r3 | Unicode version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3adant3r3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . 3
| |
| 2 | 1 | 3expb 1206 |
. 2
|
| 3 | 2 | 3adantr3 1160 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: imasmnd2 13255 imasmnd 13256 grpaddsubass 13393 grpsubsub4 13396 grpnpncan 13398 imasgrp2 13417 imasgrp 13418 cmn12 13613 abladdsub 13622 imasrng 13689 imasring 13797 opprrng 13810 opprring 13812 dvrass 13872 lss1 14095 mettri2 14805 xmetrtri 14819 |
| Copyright terms: Public domain | W3C validator |