| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adant3r3 | Unicode version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3adant3r3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . 3
| |
| 2 | 1 | 3expb 1207 |
. 2
|
| 3 | 2 | 3adantr3 1161 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: imasmnd2 13399 imasmnd 13400 grpaddsubass 13537 grpsubsub4 13540 grpnpncan 13542 imasgrp2 13561 imasgrp 13562 cmn12 13757 abladdsub 13766 imasrng 13833 imasring 13941 opprrng 13954 opprring 13956 dvrass 14016 lss1 14239 mettri2 14949 xmetrtri 14963 |
| Copyright terms: Public domain | W3C validator |