ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant3r3 Unicode version

Theorem 3adant3r3 1217
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008.)
Hypothesis
Ref Expression
3exp.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Assertion
Ref Expression
3adant3r3  |-  ( (
ph  /\  ( ps  /\ 
ch  /\  ta )
)  ->  th )

Proof of Theorem 3adant3r3
StepHypRef Expression
1 3exp.1 . . 3  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
213expb 1207 . 2  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
323adantr3 1161 1  |-  ( (
ph  /\  ( ps  /\ 
ch  /\  ta )
)  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  imasmnd2  13399  imasmnd  13400  grpaddsubass  13537  grpsubsub4  13540  grpnpncan  13542  imasgrp2  13561  imasgrp  13562  cmn12  13757  abladdsub  13766  imasrng  13833  imasring  13941  opprrng  13954  opprring  13956  dvrass  14016  lss1  14239  mettri2  14949  xmetrtri  14963
  Copyright terms: Public domain W3C validator