| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adant3r3 | Unicode version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3adant3r3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . 3
| |
| 2 | 1 | 3expb 1228 |
. 2
|
| 3 | 2 | 3adantr3 1182 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: imasmnd2 13480 imasmnd 13481 grpaddsubass 13618 grpsubsub4 13621 grpnpncan 13623 imasgrp2 13642 imasgrp 13643 cmn12 13838 abladdsub 13847 imasrng 13914 imasring 14022 opprrng 14035 opprring 14037 dvrass 14097 lss1 14320 mettri2 15030 xmetrtri 15044 |
| Copyright terms: Public domain | W3C validator |