| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adant3r3 | Unicode version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3adant3r3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . 3
| |
| 2 | 1 | 3expb 1207 |
. 2
|
| 3 | 2 | 3adantr3 1161 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: imasmnd2 13284 imasmnd 13285 grpaddsubass 13422 grpsubsub4 13425 grpnpncan 13427 imasgrp2 13446 imasgrp 13447 cmn12 13642 abladdsub 13651 imasrng 13718 imasring 13826 opprrng 13839 opprring 13841 dvrass 13901 lss1 14124 mettri2 14834 xmetrtri 14848 |
| Copyright terms: Public domain | W3C validator |