ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant3r3 Unicode version

Theorem 3adant3r3 1238
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008.)
Hypothesis
Ref Expression
3exp.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Assertion
Ref Expression
3adant3r3  |-  ( (
ph  /\  ( ps  /\ 
ch  /\  ta )
)  ->  th )

Proof of Theorem 3adant3r3
StepHypRef Expression
1 3exp.1 . . 3  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
213expb 1228 . 2  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
323adantr3 1182 1  |-  ( (
ph  /\  ( ps  /\ 
ch  /\  ta )
)  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  imasmnd2  13480  imasmnd  13481  grpaddsubass  13618  grpsubsub4  13621  grpnpncan  13623  imasgrp2  13642  imasgrp  13643  cmn12  13838  abladdsub  13847  imasrng  13914  imasring  14022  opprrng  14035  opprring  14037  dvrass  14097  lss1  14320  mettri2  15030  xmetrtri  15044
  Copyright terms: Public domain W3C validator