![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3expb | Unicode version |
Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3exp.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3expb |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | 3exp 1204 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | imp32 257 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: 3adant3r1 1214 3adant3r2 1215 3adant3r3 1216 3adant1l 1232 3adant1r 1233 mp3an1 1335 soinxp 4730 sotri 5062 fnfco 5429 mpoeq3dva 5983 fovcdmda 6064 ovelrn 6069 fnmpoovd 6270 nnmsucr 6543 fidifsnid 6929 exmidpw 6966 undiffi 6983 fidcenumlemim 7013 ltpopr 7657 ltexprlemdisj 7668 recexprlemdisj 7692 mul4 8153 add4 8182 2addsub 8235 addsubeq4 8236 subadd4 8265 muladd 8405 ltleadd 8467 divmulap 8696 divap0 8705 div23ap 8712 div12ap 8715 divsubdirap 8729 divcanap5 8735 divmuleqap 8738 divcanap6 8740 divdiv32ap 8741 div2subap 8858 letrp1 8869 lemul12b 8882 lediv1 8890 cju 8982 nndivre 9020 nndivtr 9026 nn0addge1 9289 nn0addge2 9290 peano2uz2 9427 uzind 9431 uzind3 9433 fzind 9435 fnn0ind 9436 uzind4 9656 qre 9693 irrmul 9715 rpdivcl 9748 rerpdivcl 9753 iccshftr 10063 iccshftl 10065 iccdil 10067 icccntr 10069 fzaddel 10128 fzrev 10153 frec2uzf1od 10480 expdivap 10664 2shfti 10978 iooinsup 11423 isermulc2 11486 dvds2add 11971 dvds2sub 11972 dvdstr 11974 alzdvds 11999 divalg2 12070 lcmgcdlem 12218 lcmgcdeq 12224 isprm6 12288 pcqcl 12447 mgmplusf 12952 grpinva 12972 ismndd 13021 idmhm 13044 issubm2 13048 submid 13052 0mhm 13061 resmhm 13062 resmhm2 13063 resmhm2b 13064 mhmco 13065 mhmima 13066 gsumwsubmcl 13071 gsumwmhm 13073 grpinvcnv 13143 grpinvnzcl 13147 grpsubf 13154 imasgrp2 13183 qusgrp2 13186 mhmfmhm 13190 mulgnnsubcl 13207 mulgnn0z 13222 mulgnndir 13224 issubg4m 13266 isnsg3 13280 nsgid 13288 qusadd 13307 ghmmhm 13326 ghmmhmb 13327 idghm 13332 resghm 13333 ghmf1 13346 kerf1ghm 13347 qusghm 13355 ghmfghm 13399 invghm 13402 ablnsg 13407 srgfcl 13472 srgmulgass 13488 srglmhm 13492 srgrmhm 13493 ringlghm 13560 ringrghm 13561 opprringbg 13579 mulgass3 13584 isnzr2 13683 subrngringnsg 13704 issubrng2 13709 issubrg2 13740 domnmuln0 13772 islmodd 13792 lmodscaf 13809 lcomf 13826 rmodislmodlem 13849 issubrgd 13951 qusrhm 14027 qusmul2 14028 crngridl 14029 qusmulrng 14031 znidom 14156 psraddcl 14175 tgclb 14244 topbas 14246 neissex 14344 cnpnei 14398 txcnp 14450 psmetxrge0 14511 psmetlecl 14513 xmetlecl 14546 xmettpos 14549 elbl3ps 14573 elbl3 14574 metss 14673 comet 14678 bdxmet 14680 bdmet 14681 bl2ioo 14729 divcnap 14744 cncfcdm 14761 divccncfap 14769 dvrecap 14892 dvmptfsum 14904 cosz12 14956 gausslemma2dlem1a 15215 |
Copyright terms: Public domain | W3C validator |