| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3expb | Unicode version | ||
| Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3expb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . 3
| |
| 2 | 1 | 3exp 1205 |
. 2
|
| 3 | 2 | imp32 257 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3adant3r1 1215 3adant3r2 1216 3adant3r3 1217 3adant1l 1233 3adant1r 1234 mp3an1 1337 soinxp 4746 sotri 5079 fnfco 5452 mpoeq3dva 6011 fovcdmda 6092 ovelrn 6097 fnmpoovd 6303 nnmsucr 6576 fidifsnid 6970 exmidpw 7007 undiffi 7024 fidcenumlemim 7056 ltpopr 7710 ltexprlemdisj 7721 recexprlemdisj 7745 mul4 8206 add4 8235 2addsub 8288 addsubeq4 8289 subadd4 8318 muladd 8458 ltleadd 8521 divmulap 8750 divap0 8759 div23ap 8766 div12ap 8769 divsubdirap 8783 divcanap5 8789 divmuleqap 8792 divcanap6 8794 divdiv32ap 8795 div2subap 8912 letrp1 8923 lemul12b 8936 lediv1 8944 cju 9036 nndivre 9074 nndivtr 9080 nn0addge1 9343 nn0addge2 9344 peano2uz2 9482 uzind 9486 uzind3 9488 fzind 9490 fnn0ind 9491 uzind4 9711 qre 9748 irrmul 9770 rpdivcl 9803 rerpdivcl 9808 iccshftr 10118 iccshftl 10120 iccdil 10122 icccntr 10124 fzaddel 10183 fzrev 10208 frec2uzf1od 10553 expdivap 10737 fundm2domnop0 10992 swrdwrdsymbg 11120 ccatpfx 11155 2shfti 11175 iooinsup 11621 isermulc2 11684 dvds2add 12169 dvds2sub 12170 dvdstr 12172 alzdvds 12198 divalg2 12270 lcmgcdlem 12432 lcmgcdeq 12438 isprm6 12502 pcqcl 12662 mgmplusf 13231 grpinva 13251 ismndd 13302 imasmnd2 13317 idmhm 13334 issubm2 13338 submid 13342 0mhm 13351 resmhm 13352 resmhm2 13353 resmhm2b 13354 mhmco 13355 mhmima 13356 gsumwsubmcl 13361 gsumwmhm 13363 grpinvcnv 13433 grpinvnzcl 13437 grpsubf 13444 imasgrp2 13479 qusgrp2 13482 mhmfmhm 13486 mulgnnsubcl 13503 mulgnn0z 13518 mulgnndir 13520 issubg4m 13562 isnsg3 13576 nsgid 13584 qusadd 13603 ghmmhm 13622 ghmmhmb 13623 idghm 13628 resghm 13629 ghmf1 13642 kerf1ghm 13643 qusghm 13651 ghmfghm 13695 invghm 13698 ablnsg 13703 srgfcl 13768 srgmulgass 13784 srglmhm 13788 srgrmhm 13789 ringlghm 13856 ringrghm 13857 opprringbg 13875 mulgass3 13880 isnzr2 13979 subrngringnsg 14000 issubrng2 14005 issubrg2 14036 domnmuln0 14068 islmodd 14088 lmodscaf 14105 lcomf 14122 rmodislmodlem 14145 issubrgd 14247 qusrhm 14323 qusmul2 14324 crngridl 14325 qusmulrng 14327 znidom 14452 psraddcl 14475 tgclb 14570 topbas 14572 neissex 14670 cnpnei 14724 txcnp 14776 psmetxrge0 14837 psmetlecl 14839 xmetlecl 14872 xmettpos 14875 elbl3ps 14899 elbl3 14900 metss 14999 comet 15004 bdxmet 15006 bdmet 15007 bl2ioo 15055 divcnap 15070 cncfcdm 15087 divccncfap 15095 dvrecap 15218 dvmptfsum 15230 cosz12 15285 gausslemma2dlem1a 15568 |
| Copyright terms: Public domain | W3C validator |