![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3expb | Unicode version |
Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3exp.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3expb |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | 3exp 1202 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | imp32 257 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: 3adant3r1 1212 3adant3r2 1213 3adant3r3 1214 3adant1l 1230 3adant1r 1231 mp3an1 1324 soinxp 4698 sotri 5026 fnfco 5392 mpoeq3dva 5941 fovcdmda 6020 ovelrn 6025 fnmpoovd 6218 nnmsucr 6491 fidifsnid 6873 exmidpw 6910 undiffi 6926 fidcenumlemim 6953 ltpopr 7596 ltexprlemdisj 7607 recexprlemdisj 7631 mul4 8091 add4 8120 2addsub 8173 addsubeq4 8174 subadd4 8203 muladd 8343 ltleadd 8405 divmulap 8634 divap0 8643 div23ap 8650 div12ap 8653 divsubdirap 8667 divcanap5 8673 divmuleqap 8676 divcanap6 8678 divdiv32ap 8679 div2subap 8796 letrp1 8807 lemul12b 8820 lediv1 8828 cju 8920 nndivre 8957 nndivtr 8963 nn0addge1 9224 nn0addge2 9225 peano2uz2 9362 uzind 9366 uzind3 9368 fzind 9370 fnn0ind 9371 uzind4 9590 qre 9627 irrmul 9649 rpdivcl 9681 rerpdivcl 9686 iccshftr 9996 iccshftl 9998 iccdil 10000 icccntr 10002 fzaddel 10061 fzrev 10086 frec2uzf1od 10408 expdivap 10573 2shfti 10842 iooinsup 11287 isermulc2 11350 dvds2add 11834 dvds2sub 11835 dvdstr 11837 alzdvds 11862 divalg2 11933 lcmgcdlem 12079 lcmgcdeq 12085 isprm6 12149 pcqcl 12308 mgmplusf 12790 grprinvd 12810 ismndd 12843 idmhm 12865 issubm2 12869 submid 12873 0mhm 12878 mhmco 12879 mhmima 12880 grpinvcnv 12943 grpinvnzcl 12947 grpsubf 12954 mhmfmhm 12986 mulgnnsubcl 13000 mulgnn0z 13015 mulgnndir 13017 issubg4m 13058 isnsg3 13072 nsgid 13080 srgfcl 13161 srgmulgass 13177 srglmhm 13181 srgrmhm 13182 opprringbg 13255 mulgass3 13259 issubrg2 13367 islmodd 13388 lmodscaf 13405 lcomf 13422 rmodislmodlem 13445 tgclb 13650 topbas 13652 neissex 13750 cnpnei 13804 txcnp 13856 psmetxrge0 13917 psmetlecl 13919 xmetlecl 13952 xmettpos 13955 elbl3ps 13979 elbl3 13980 metss 14079 comet 14084 bdxmet 14086 bdmet 14087 bl2ioo 14127 divcnap 14140 cncfcdm 14154 divccncfap 14162 dvrecap 14262 cosz12 14286 |
Copyright terms: Public domain | W3C validator |