| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3expb | Unicode version | ||
| Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3expb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . 3
| |
| 2 | 1 | 3exp 1226 |
. 2
|
| 3 | 2 | imp32 257 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 3adant3r1 1236 3adant3r2 1237 3adant3r3 1238 3adant1l 1254 3adant1r 1255 mp3an1 1358 soinxp 4789 sotri 5124 fnfco 5500 mpoeq3dva 6068 fovcdmda 6149 ovelrn 6154 fnmpoovd 6361 nnmsucr 6634 fidifsnid 7033 exmidpw 7070 undiffi 7087 fidcenumlemim 7119 ltpopr 7782 ltexprlemdisj 7793 recexprlemdisj 7817 mul4 8278 add4 8307 2addsub 8360 addsubeq4 8361 subadd4 8390 muladd 8530 ltleadd 8593 divmulap 8822 divap0 8831 div23ap 8838 div12ap 8841 divsubdirap 8855 divcanap5 8861 divmuleqap 8864 divcanap6 8866 divdiv32ap 8867 div2subap 8984 letrp1 8995 lemul12b 9008 lediv1 9016 cju 9108 nndivre 9146 nndivtr 9152 nn0addge1 9415 nn0addge2 9416 peano2uz2 9554 uzind 9558 uzind3 9560 fzind 9562 fnn0ind 9563 uzind4 9783 qre 9820 irrmul 9842 rpdivcl 9875 rerpdivcl 9880 iccshftr 10190 iccshftl 10192 iccdil 10194 icccntr 10196 fzaddel 10255 fzrev 10280 frec2uzf1od 10628 expdivap 10812 fundm2domnop0 11067 swrdwrdsymbg 11196 ccatpfx 11233 swrdccat 11267 2shfti 11342 iooinsup 11788 isermulc2 11851 dvds2add 12336 dvds2sub 12337 dvdstr 12339 alzdvds 12365 divalg2 12437 lcmgcdlem 12599 lcmgcdeq 12605 isprm6 12669 pcqcl 12829 mgmplusf 13399 grpinva 13419 ismndd 13470 imasmnd2 13485 idmhm 13502 issubm2 13506 submid 13510 0mhm 13519 resmhm 13520 resmhm2 13521 resmhm2b 13522 mhmco 13523 mhmima 13524 gsumwsubmcl 13529 gsumwmhm 13531 grpinvcnv 13601 grpinvnzcl 13605 grpsubf 13612 imasgrp2 13647 qusgrp2 13650 mhmfmhm 13654 mulgnnsubcl 13671 mulgnn0z 13686 mulgnndir 13688 issubg4m 13730 isnsg3 13744 nsgid 13752 qusadd 13771 ghmmhm 13790 ghmmhmb 13791 idghm 13796 resghm 13797 ghmf1 13810 kerf1ghm 13811 qusghm 13819 ghmfghm 13863 invghm 13866 ablnsg 13871 srgfcl 13936 srgmulgass 13952 srglmhm 13956 srgrmhm 13957 ringlghm 14024 ringrghm 14025 opprringbg 14043 mulgass3 14048 isnzr2 14148 subrngringnsg 14169 issubrng2 14174 issubrg2 14205 domnmuln0 14237 islmodd 14257 lmodscaf 14274 lcomf 14291 rmodislmodlem 14314 issubrgd 14416 qusrhm 14492 qusmul2 14493 crngridl 14494 qusmulrng 14496 znidom 14621 psraddcl 14644 tgclb 14739 topbas 14741 neissex 14839 cnpnei 14893 txcnp 14945 psmetxrge0 15006 psmetlecl 15008 xmetlecl 15041 xmettpos 15044 elbl3ps 15068 elbl3 15069 metss 15168 comet 15173 bdxmet 15175 bdmet 15176 bl2ioo 15224 divcnap 15239 cncfcdm 15256 divccncfap 15264 dvrecap 15387 dvmptfsum 15399 cosz12 15454 gausslemma2dlem1a 15737 usgredg2vlem1 16020 usgredg2vlem2 16021 |
| Copyright terms: Public domain | W3C validator |