![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3expb | Unicode version |
Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3exp.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3expb |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | 3exp 1204 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | imp32 257 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: 3adant3r1 1214 3adant3r2 1215 3adant3r3 1216 3adant1l 1232 3adant1r 1233 mp3an1 1335 soinxp 4729 sotri 5061 fnfco 5428 mpoeq3dva 5982 fovcdmda 6062 ovelrn 6067 fnmpoovd 6268 nnmsucr 6541 fidifsnid 6927 exmidpw 6964 undiffi 6981 fidcenumlemim 7011 ltpopr 7655 ltexprlemdisj 7666 recexprlemdisj 7690 mul4 8151 add4 8180 2addsub 8233 addsubeq4 8234 subadd4 8263 muladd 8403 ltleadd 8465 divmulap 8694 divap0 8703 div23ap 8710 div12ap 8713 divsubdirap 8727 divcanap5 8733 divmuleqap 8736 divcanap6 8738 divdiv32ap 8739 div2subap 8856 letrp1 8867 lemul12b 8880 lediv1 8888 cju 8980 nndivre 9018 nndivtr 9024 nn0addge1 9286 nn0addge2 9287 peano2uz2 9424 uzind 9428 uzind3 9430 fzind 9432 fnn0ind 9433 uzind4 9653 qre 9690 irrmul 9712 rpdivcl 9745 rerpdivcl 9750 iccshftr 10060 iccshftl 10062 iccdil 10064 icccntr 10066 fzaddel 10125 fzrev 10150 frec2uzf1od 10477 expdivap 10661 2shfti 10975 iooinsup 11420 isermulc2 11483 dvds2add 11968 dvds2sub 11969 dvdstr 11971 alzdvds 11996 divalg2 12067 lcmgcdlem 12215 lcmgcdeq 12221 isprm6 12285 pcqcl 12444 mgmplusf 12949 grpinva 12969 ismndd 13018 idmhm 13041 issubm2 13045 submid 13049 0mhm 13058 resmhm 13059 resmhm2 13060 resmhm2b 13061 mhmco 13062 mhmima 13063 gsumwsubmcl 13068 gsumwmhm 13070 grpinvcnv 13140 grpinvnzcl 13144 grpsubf 13151 imasgrp2 13180 qusgrp2 13183 mhmfmhm 13187 mulgnnsubcl 13204 mulgnn0z 13219 mulgnndir 13221 issubg4m 13263 isnsg3 13277 nsgid 13285 qusadd 13304 ghmmhm 13323 ghmmhmb 13324 idghm 13329 resghm 13330 ghmf1 13343 kerf1ghm 13344 qusghm 13352 ghmfghm 13396 invghm 13399 ablnsg 13404 srgfcl 13469 srgmulgass 13485 srglmhm 13489 srgrmhm 13490 ringlghm 13557 ringrghm 13558 opprringbg 13576 mulgass3 13581 isnzr2 13680 subrngringnsg 13701 issubrng2 13706 issubrg2 13737 domnmuln0 13769 islmodd 13789 lmodscaf 13806 lcomf 13823 rmodislmodlem 13846 issubrgd 13948 qusrhm 14024 qusmul2 14025 crngridl 14026 qusmulrng 14028 znidom 14145 psraddcl 14164 tgclb 14233 topbas 14235 neissex 14333 cnpnei 14387 txcnp 14439 psmetxrge0 14500 psmetlecl 14502 xmetlecl 14535 xmettpos 14538 elbl3ps 14562 elbl3 14563 metss 14662 comet 14667 bdxmet 14669 bdmet 14670 bl2ioo 14710 divcnap 14723 cncfcdm 14737 divccncfap 14745 dvrecap 14862 cosz12 14915 gausslemma2dlem1a 15174 |
Copyright terms: Public domain | W3C validator |