Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3expb | Unicode version |
Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3exp.1 |
Ref | Expression |
---|---|
3expb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 | |
2 | 1 | 3exp 1197 | . 2 |
3 | 2 | imp32 255 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: 3adant3r1 1207 3adant3r2 1208 3adant3r3 1209 3adant1l 1225 3adant1r 1226 mp3an1 1319 soinxp 4681 sotri 5006 fnfco 5372 mpoeq3dva 5917 fovrnda 5996 ovelrn 6001 fnmpoovd 6194 nnmsucr 6467 fidifsnid 6849 exmidpw 6886 undiffi 6902 fidcenumlemim 6929 ltpopr 7557 ltexprlemdisj 7568 recexprlemdisj 7592 mul4 8051 add4 8080 2addsub 8133 addsubeq4 8134 subadd4 8163 muladd 8303 ltleadd 8365 divmulap 8592 divap0 8601 div23ap 8608 div12ap 8611 divsubdirap 8625 divcanap5 8631 divmuleqap 8634 divcanap6 8636 divdiv32ap 8637 div2subap 8754 letrp1 8764 lemul12b 8777 lediv1 8785 cju 8877 nndivre 8914 nndivtr 8920 nn0addge1 9181 nn0addge2 9182 peano2uz2 9319 uzind 9323 uzind3 9325 fzind 9327 fnn0ind 9328 uzind4 9547 qre 9584 irrmul 9606 rpdivcl 9636 rerpdivcl 9641 iccshftr 9951 iccshftl 9953 iccdil 9955 icccntr 9957 fzaddel 10015 fzrev 10040 frec2uzf1od 10362 expdivap 10527 2shfti 10795 iooinsup 11240 isermulc2 11303 dvds2add 11787 dvds2sub 11788 dvdstr 11790 alzdvds 11814 divalg2 11885 lcmgcdlem 12031 lcmgcdeq 12037 isprm6 12101 pcqcl 12260 mgmplusf 12620 grprinvd 12640 ismndd 12673 idmhm 12692 submid 12699 0mhm 12704 mhmco 12705 mhmima 12706 grpinvcnv 12767 grpinvnzcl 12771 tgclb 12859 topbas 12861 neissex 12959 cnpnei 13013 txcnp 13065 psmetxrge0 13126 psmetlecl 13128 xmetlecl 13161 xmettpos 13164 elbl3ps 13188 elbl3 13189 metss 13288 comet 13293 bdxmet 13295 bdmet 13296 bl2ioo 13336 divcnap 13349 cncffvrn 13363 divccncfap 13371 dvrecap 13471 cosz12 13495 |
Copyright terms: Public domain | W3C validator |