| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adant3r1 | Unicode version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Feb-2008.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3adant3r1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . 3
| |
| 2 | 1 | 3expb 1228 |
. 2
|
| 3 | 2 | 3adantr1 1180 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: ccatswrd 11202 imasmnd2 13485 grpsubsub 13622 grpnnncan2 13630 imasgrp2 13647 mulgnn0ass 13695 mulgsubdir 13699 cmn32 13841 ablsubadd 13849 imasrng 13919 imasring 14027 opprrng 14040 opprring 14042 xmettri3 15048 mettri3 15049 xmetrtri 15050 rprelogbmulexp 15630 |
| Copyright terms: Public domain | W3C validator |