ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant3r1 Unicode version

Theorem 3adant3r1 1215
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Feb-2008.)
Hypothesis
Ref Expression
3exp.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Assertion
Ref Expression
3adant3r1  |-  ( (
ph  /\  ( ta  /\ 
ps  /\  ch )
)  ->  th )

Proof of Theorem 3adant3r1
StepHypRef Expression
1 3exp.1 . . 3  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
213expb 1207 . 2  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
323adantr1 1159 1  |-  ( (
ph  /\  ( ta  /\ 
ps  /\  ch )
)  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  ccatswrd  11126  imasmnd2  13317  grpsubsub  13454  grpnnncan2  13462  imasgrp2  13479  mulgnn0ass  13527  mulgsubdir  13531  cmn32  13673  ablsubadd  13681  imasrng  13751  imasring  13859  opprrng  13872  opprring  13874  xmettri3  14879  mettri3  14880  xmetrtri  14881  rprelogbmulexp  15461
  Copyright terms: Public domain W3C validator