ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant3r1 Unicode version

Theorem 3adant3r1 1215
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Feb-2008.)
Hypothesis
Ref Expression
3exp.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Assertion
Ref Expression
3adant3r1  |-  ( (
ph  /\  ( ta  /\ 
ps  /\  ch )
)  ->  th )

Proof of Theorem 3adant3r1
StepHypRef Expression
1 3exp.1 . . 3  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
213expb 1207 . 2  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
323adantr1 1159 1  |-  ( (
ph  /\  ( ta  /\ 
ps  /\  ch )
)  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  ccatswrd  11161  imasmnd2  13399  grpsubsub  13536  grpnnncan2  13544  imasgrp2  13561  mulgnn0ass  13609  mulgsubdir  13613  cmn32  13755  ablsubadd  13763  imasrng  13833  imasring  13941  opprrng  13954  opprring  13956  xmettri3  14961  mettri3  14962  xmetrtri  14963  rprelogbmulexp  15543
  Copyright terms: Public domain W3C validator