| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adant3r1 | Unicode version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Feb-2008.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3adant3r1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . 3
| |
| 2 | 1 | 3expb 1207 |
. 2
|
| 3 | 2 | 3adantr1 1159 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: ccatswrd 11161 imasmnd2 13399 grpsubsub 13536 grpnnncan2 13544 imasgrp2 13561 mulgnn0ass 13609 mulgsubdir 13613 cmn32 13755 ablsubadd 13763 imasrng 13833 imasring 13941 opprrng 13954 opprring 13956 xmettri3 14961 mettri3 14962 xmetrtri 14963 rprelogbmulexp 15543 |
| Copyright terms: Public domain | W3C validator |