| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adant3r1 | Unicode version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Feb-2008.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3adant3r1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . 3
| |
| 2 | 1 | 3expb 1207 |
. 2
|
| 3 | 2 | 3adantr1 1159 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: ccatswrd 11126 imasmnd2 13317 grpsubsub 13454 grpnnncan2 13462 imasgrp2 13479 mulgnn0ass 13527 mulgsubdir 13531 cmn32 13673 ablsubadd 13681 imasrng 13751 imasring 13859 opprrng 13872 opprring 13874 xmettri3 14879 mettri3 14880 xmetrtri 14881 rprelogbmulexp 15461 |
| Copyright terms: Public domain | W3C validator |