| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adant3r1 | Unicode version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Feb-2008.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3adant3r1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . 3
| |
| 2 | 1 | 3expb 1206 |
. 2
|
| 3 | 2 | 3adantr1 1158 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: imasmnd2 13154 grpsubsub 13291 grpnnncan2 13299 imasgrp2 13316 mulgnn0ass 13364 mulgsubdir 13368 cmn32 13510 ablsubadd 13518 imasrng 13588 imasring 13696 opprrng 13709 opprring 13711 xmettri3 14694 mettri3 14695 xmetrtri 14696 rprelogbmulexp 15276 |
| Copyright terms: Public domain | W3C validator |