ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant3r1 Unicode version

Theorem 3adant3r1 1236
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Feb-2008.)
Hypothesis
Ref Expression
3exp.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Assertion
Ref Expression
3adant3r1  |-  ( (
ph  /\  ( ta  /\ 
ps  /\  ch )
)  ->  th )

Proof of Theorem 3adant3r1
StepHypRef Expression
1 3exp.1 . . 3  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
213expb 1228 . 2  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
323adantr1 1180 1  |-  ( (
ph  /\  ( ta  /\ 
ps  /\  ch )
)  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  ccatswrd  11202  imasmnd2  13485  grpsubsub  13622  grpnnncan2  13630  imasgrp2  13647  mulgnn0ass  13695  mulgsubdir  13699  cmn32  13841  ablsubadd  13849  imasrng  13919  imasring  14027  opprrng  14040  opprring  14042  xmettri3  15048  mettri3  15049  xmetrtri  15050  rprelogbmulexp  15630
  Copyright terms: Public domain W3C validator