ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant3r1 Unicode version

Theorem 3adant3r1 1214
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Feb-2008.)
Hypothesis
Ref Expression
3exp.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Assertion
Ref Expression
3adant3r1  |-  ( (
ph  /\  ( ta  /\ 
ps  /\  ch )
)  ->  th )

Proof of Theorem 3adant3r1
StepHypRef Expression
1 3exp.1 . . 3  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
213expb 1206 . 2  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
323adantr1 1158 1  |-  ( (
ph  /\  ( ta  /\ 
ps  /\  ch )
)  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  imasmnd2  13154  grpsubsub  13291  grpnnncan2  13299  imasgrp2  13316  mulgnn0ass  13364  mulgsubdir  13368  cmn32  13510  ablsubadd  13518  imasrng  13588  imasring  13696  opprrng  13709  opprring  13711  xmettri3  14694  mettri3  14695  xmetrtri  14696  rprelogbmulexp  15276
  Copyright terms: Public domain W3C validator