| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adant3r1 | Unicode version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Feb-2008.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3adant3r1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . 3
| |
| 2 | 1 | 3expb 1207 |
. 2
|
| 3 | 2 | 3adantr1 1159 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: ccatswrd 11123 imasmnd2 13284 grpsubsub 13421 grpnnncan2 13429 imasgrp2 13446 mulgnn0ass 13494 mulgsubdir 13498 cmn32 13640 ablsubadd 13648 imasrng 13718 imasring 13826 opprrng 13839 opprring 13841 xmettri3 14846 mettri3 14847 xmetrtri 14848 rprelogbmulexp 15428 |
| Copyright terms: Public domain | W3C validator |