| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3adant3r1 | Unicode version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Feb-2008.) | 
| Ref | Expression | 
|---|---|
| 3exp.1 | 
 | 
| Ref | Expression | 
|---|---|
| 3adant3r1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3exp.1 | 
. . 3
 | |
| 2 | 1 | 3expb 1206 | 
. 2
 | 
| 3 | 2 | 3adantr1 1158 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: grpsubsub 13221 grpnnncan2 13229 imasgrp2 13240 mulgnn0ass 13288 mulgsubdir 13292 cmn32 13434 ablsubadd 13442 imasrng 13512 imasring 13620 opprrng 13633 opprring 13635 xmettri3 14610 mettri3 14611 xmetrtri 14612 rprelogbmulexp 15192 | 
| Copyright terms: Public domain | W3C validator |