ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mettri Unicode version

Theorem mettri 12720
Description: Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by NM, 27-Aug-2006.)
Assertion
Ref Expression
mettri  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D B )  <_  (
( A D C )  +  ( C D B ) ) )

Proof of Theorem mettri
StepHypRef Expression
1 mettri2 12709 . . . . 5  |-  ( ( D  e.  ( Met `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X )
)  ->  ( A D B )  <_  (
( C D A )  +  ( C D B ) ) )
21expcom 115 . . . 4  |-  ( ( C  e.  X  /\  A  e.  X  /\  B  e.  X )  ->  ( D  e.  ( Met `  X )  ->  ( A D B )  <_  (
( C D A )  +  ( C D B ) ) ) )
323coml 1189 . . 3  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  ->  ( D  e.  ( Met `  X )  ->  ( A D B )  <_  (
( C D A )  +  ( C D B ) ) ) )
43impcom 124 . 2  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D B )  <_  (
( C D A )  +  ( C D B ) ) )
5 metsym 12718 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  C  e.  X )  ->  ( A D C )  =  ( C D A ) )
653adant3r2 1192 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D C )  =  ( C D A ) )
76oveq1d 5829 . 2  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D C )  +  ( C D B ) )  =  ( ( C D A )  +  ( C D B ) ) )
84, 7breqtrrd 3988 1  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D B )  <_  (
( A D C )  +  ( C D B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    = wceq 1332    e. wcel 2125   class class class wbr 3961   ` cfv 5163  (class class class)co 5814    + caddc 7714    <_ cle 7892   Metcmet 12328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-cnex 7802  ax-resscn 7803  ax-1re 7805  ax-addrcl 7808  ax-0id 7819  ax-rnegex 7820  ax-pre-ltirr 7823  ax-pre-apti 7826
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-fv 5171  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-map 6584  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-xadd 9658  df-xmet 12335  df-met 12336
This theorem is referenced by:  mettri3  12722  metrtri  12724  mstri  12820
  Copyright terms: Public domain W3C validator