ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprring Unicode version

Theorem opprring 13575
Description: An opposite ring is a ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.)
Hypothesis
Ref Expression
opprbas.1  |-  O  =  (oppr
`  R )
Assertion
Ref Expression
opprring  |-  ( R  e.  Ring  ->  O  e. 
Ring )

Proof of Theorem opprring
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . 3  |-  O  =  (oppr
`  R )
2 eqid 2193 . . 3  |-  ( Base `  R )  =  (
Base `  R )
31, 2opprbasg 13571 . 2  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  O )
)
4 eqid 2193 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
51, 4oppraddg 13572 . 2  |-  ( R  e.  Ring  ->  ( +g  `  R )  =  ( +g  `  O ) )
6 eqidd 2194 . 2  |-  ( R  e.  Ring  ->  ( .r
`  O )  =  ( .r `  O
) )
7 ringgrp 13497 . . 3  |-  ( R  e.  Ring  ->  R  e. 
Grp )
8 eqidd 2194 . . . 4  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  R )
)
95oveqdr 5946 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( x ( +g  `  R ) y )  =  ( x ( +g  `  O ) y ) )
108, 3, 9grppropd 13089 . . 3  |-  ( R  e.  Ring  ->  ( R  e.  Grp  <->  O  e.  Grp ) )
117, 10mpbid 147 . 2  |-  ( R  e.  Ring  ->  O  e. 
Grp )
12 eqid 2193 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
13 eqid 2193 . . . 4  |-  ( .r
`  O )  =  ( .r `  O
)
142, 12, 1, 13opprmulg 13567 . . 3  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x
( .r `  O
) y )  =  ( y ( .r
`  R ) x ) )
152, 12ringcl 13509 . . . 4  |-  ( ( R  e.  Ring  /\  y  e.  ( Base `  R
)  /\  x  e.  ( Base `  R )
)  ->  ( y
( .r `  R
) x )  e.  ( Base `  R
) )
16153com23 1211 . . 3  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( y
( .r `  R
) x )  e.  ( Base `  R
) )
1714, 16eqeltrd 2270 . 2  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x
( .r `  O
) y )  e.  ( Base `  R
) )
18 simpl 109 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  R  e.  Ring )
19 simpr3 1007 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  z  e.  ( Base `  R
) )
20 simpr2 1006 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  y  e.  ( Base `  R
) )
21 simpr1 1005 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  x  e.  ( Base `  R
) )
222, 12ringass 13512 . . . 4  |-  ( ( R  e.  Ring  /\  (
z  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  x  e.  ( Base `  R )
) )  ->  (
( z ( .r
`  R ) y ) ( .r `  R ) x )  =  ( z ( .r `  R ) ( y ( .r
`  R ) x ) ) )
2318, 19, 20, 21, 22syl13anc 1251 . . 3  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
( z ( .r
`  R ) y ) ( .r `  R ) x )  =  ( z ( .r `  R ) ( y ( .r
`  R ) x ) ) )
242, 12, 1, 13opprmulg 13567 . . . . . 6  |-  ( ( R  e.  Ring  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
)  ->  ( y
( .r `  O
) z )  =  ( z ( .r
`  R ) y ) )
25243adant3r1 1214 . . . . 5  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
y ( .r `  O ) z )  =  ( z ( .r `  R ) y ) )
2625oveq2d 5934 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
x ( .r `  O ) ( y ( .r `  O
) z ) )  =  ( x ( .r `  O ) ( z ( .r
`  R ) y ) ) )
272, 12ringcl 13509 . . . . . 6  |-  ( ( R  e.  Ring  /\  z  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( z
( .r `  R
) y )  e.  ( Base `  R
) )
2818, 19, 20, 27syl3anc 1249 . . . . 5  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
z ( .r `  R ) y )  e.  ( Base `  R
) )
292, 12, 1, 13opprmulg 13567 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
)  /\  ( z
( .r `  R
) y )  e.  ( Base `  R
) )  ->  (
x ( .r `  O ) ( z ( .r `  R
) y ) )  =  ( ( z ( .r `  R
) y ) ( .r `  R ) x ) )
3018, 21, 28, 29syl3anc 1249 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
x ( .r `  O ) ( z ( .r `  R
) y ) )  =  ( ( z ( .r `  R
) y ) ( .r `  R ) x ) )
3126, 30eqtrd 2226 . . 3  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
x ( .r `  O ) ( y ( .r `  O
) z ) )  =  ( ( z ( .r `  R
) y ) ( .r `  R ) x ) )
3214oveq1d 5933 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( (
x ( .r `  O ) y ) ( .r `  O
) z )  =  ( ( y ( .r `  R ) x ) ( .r
`  O ) z ) )
33323adant3r3 1216 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
( x ( .r
`  O ) y ) ( .r `  O ) z )  =  ( ( y ( .r `  R
) x ) ( .r `  O ) z ) )
34163adant3r3 1216 . . . . 5  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
y ( .r `  R ) x )  e.  ( Base `  R
) )
352, 12, 1, 13opprmulg 13567 . . . . 5  |-  ( ( R  e.  Ring  /\  (
y ( .r `  R ) x )  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
)  ->  ( (
y ( .r `  R ) x ) ( .r `  O
) z )  =  ( z ( .r
`  R ) ( y ( .r `  R ) x ) ) )
3618, 34, 19, 35syl3anc 1249 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
( y ( .r
`  R ) x ) ( .r `  O ) z )  =  ( z ( .r `  R ) ( y ( .r
`  R ) x ) ) )
3733, 36eqtrd 2226 . . 3  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
( x ( .r
`  O ) y ) ( .r `  O ) z )  =  ( z ( .r `  R ) ( y ( .r
`  R ) x ) ) )
3823, 31, 373eqtr4rd 2237 . 2  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
( x ( .r
`  O ) y ) ( .r `  O ) z )  =  ( x ( .r `  O ) ( y ( .r
`  O ) z ) ) )
392, 4, 12ringdir 13515 . . . 4  |-  ( ( R  e.  Ring  /\  (
y  e.  ( Base `  R )  /\  z  e.  ( Base `  R
)  /\  x  e.  ( Base `  R )
) )  ->  (
( y ( +g  `  R ) z ) ( .r `  R
) x )  =  ( ( y ( .r `  R ) x ) ( +g  `  R ) ( z ( .r `  R
) x ) ) )
4018, 20, 19, 21, 39syl13anc 1251 . . 3  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
( y ( +g  `  R ) z ) ( .r `  R
) x )  =  ( ( y ( .r `  R ) x ) ( +g  `  R ) ( z ( .r `  R
) x ) ) )
412, 4ringacl 13526 . . . . 5  |-  ( ( R  e.  Ring  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
)  ->  ( y
( +g  `  R ) z )  e.  (
Base `  R )
)
42413adant3r1 1214 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
y ( +g  `  R
) z )  e.  ( Base `  R
) )
432, 12, 1, 13opprmulg 13567 . . . 4  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
)  /\  ( y
( +g  `  R ) z )  e.  (
Base `  R )
)  ->  ( x
( .r `  O
) ( y ( +g  `  R ) z ) )  =  ( ( y ( +g  `  R ) z ) ( .r
`  R ) x ) )
4418, 21, 42, 43syl3anc 1249 . . 3  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
x ( .r `  O ) ( y ( +g  `  R
) z ) )  =  ( ( y ( +g  `  R
) z ) ( .r `  R ) x ) )
45143adant3r3 1216 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
x ( .r `  O ) y )  =  ( y ( .r `  R ) x ) )
462, 12, 1, 13opprmulg 13567 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
)  ->  ( x
( .r `  O
) z )  =  ( z ( .r
`  R ) x ) )
47463adant3r2 1215 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
x ( .r `  O ) z )  =  ( z ( .r `  R ) x ) )
4845, 47oveq12d 5936 . . 3  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
( x ( .r
`  O ) y ) ( +g  `  R
) ( x ( .r `  O ) z ) )  =  ( ( y ( .r `  R ) x ) ( +g  `  R ) ( z ( .r `  R
) x ) ) )
4940, 44, 483eqtr4d 2236 . 2  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
x ( .r `  O ) ( y ( +g  `  R
) z ) )  =  ( ( x ( .r `  O
) y ) ( +g  `  R ) ( x ( .r
`  O ) z ) ) )
502, 4, 12ringdi 13514 . . . 4  |-  ( ( R  e.  Ring  /\  (
z  e.  ( Base `  R )  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) )  ->  (
z ( .r `  R ) ( x ( +g  `  R
) y ) )  =  ( ( z ( .r `  R
) x ) ( +g  `  R ) ( z ( .r
`  R ) y ) ) )
5118, 19, 21, 20, 50syl13anc 1251 . . 3  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
z ( .r `  R ) ( x ( +g  `  R
) y ) )  =  ( ( z ( .r `  R
) x ) ( +g  `  R ) ( z ( .r
`  R ) y ) ) )
522, 4ringacl 13526 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x
( +g  `  R ) y )  e.  (
Base `  R )
)
53523adant3r3 1216 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
x ( +g  `  R
) y )  e.  ( Base `  R
) )
542, 12, 1, 13opprmulg 13567 . . . 4  |-  ( ( R  e.  Ring  /\  (
x ( +g  `  R
) y )  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
)  ->  ( (
x ( +g  `  R
) y ) ( .r `  O ) z )  =  ( z ( .r `  R ) ( x ( +g  `  R
) y ) ) )
5518, 53, 19, 54syl3anc 1249 . . 3  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
( x ( +g  `  R ) y ) ( .r `  O
) z )  =  ( z ( .r
`  R ) ( x ( +g  `  R
) y ) ) )
5647, 25oveq12d 5936 . . 3  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
( x ( .r
`  O ) z ) ( +g  `  R
) ( y ( .r `  O ) z ) )  =  ( ( z ( .r `  R ) x ) ( +g  `  R ) ( z ( .r `  R
) y ) ) )
5751, 55, 563eqtr4d 2236 . 2  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
( x ( +g  `  R ) y ) ( .r `  O
) z )  =  ( ( x ( .r `  O ) z ) ( +g  `  R ) ( y ( .r `  O
) z ) ) )
58 eqid 2193 . . 3  |-  ( 1r
`  R )  =  ( 1r `  R
)
592, 58ringidcl 13516 . 2  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  ( Base `  R
) )
60 simpl 109 . . . 4  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
) )  ->  R  e.  Ring )
6160, 59syl 14 . . . 4  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
) )  ->  ( 1r `  R )  e.  ( Base `  R
) )
62 simpr 110 . . . 4  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
) )  ->  x  e.  ( Base `  R
) )
632, 12, 1, 13opprmulg 13567 . . . 4  |-  ( ( R  e.  Ring  /\  ( 1r `  R )  e.  ( Base `  R
)  /\  x  e.  ( Base `  R )
)  ->  ( ( 1r `  R ) ( .r `  O ) x )  =  ( x ( .r `  R ) ( 1r
`  R ) ) )
6460, 61, 62, 63syl3anc 1249 . . 3  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
) )  ->  (
( 1r `  R
) ( .r `  O ) x )  =  ( x ( .r `  R ) ( 1r `  R
) ) )
652, 12, 58ringridm 13520 . . 3  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
) )  ->  (
x ( .r `  R ) ( 1r
`  R ) )  =  x )
6664, 65eqtrd 2226 . 2  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
) )  ->  (
( 1r `  R
) ( .r `  O ) x )  =  x )
672, 12, 1, 13opprmulg 13567 . . . 4  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
)  /\  ( 1r `  R )  e.  (
Base `  R )
)  ->  ( x
( .r `  O
) ( 1r `  R ) )  =  ( ( 1r `  R ) ( .r
`  R ) x ) )
6860, 62, 61, 67syl3anc 1249 . . 3  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
) )  ->  (
x ( .r `  O ) ( 1r
`  R ) )  =  ( ( 1r
`  R ) ( .r `  R ) x ) )
692, 12, 58ringlidm 13519 . . 3  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
) )  ->  (
( 1r `  R
) ( .r `  R ) x )  =  x )
7068, 69eqtrd 2226 . 2  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
) )  ->  (
x ( .r `  O ) ( 1r
`  R ) )  =  x )
713, 5, 6, 11, 17, 38, 49, 57, 59, 66, 70isringd 13537 1  |-  ( R  e.  Ring  ->  O  e. 
Ring )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   .rcmulr 12696   Grpcgrp 13072   1rcur 13455   Ringcrg 13492  opprcoppr 13563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-tpos 6298  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-mgp 13417  df-ur 13456  df-ring 13494  df-oppr 13564
This theorem is referenced by:  opprringbg  13576  mulgass3  13581  1unit  13603  opprunitd  13606  crngunit  13607  unitmulcl  13609  unitgrp  13612  unitnegcl  13626  unitpropdg  13644  subrguss  13732  subrgunit  13735  isridl  14000  ridl0  14006  ridl1  14007
  Copyright terms: Public domain W3C validator