| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opprring | Unicode version | ||
| Description: An opposite ring is a ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.) |
| Ref | Expression |
|---|---|
| opprbas.1 |
|
| Ref | Expression |
|---|---|
| opprring |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprbas.1 |
. . 3
| |
| 2 | eqid 2229 |
. . 3
| |
| 3 | 1, 2 | opprbasg 14038 |
. 2
|
| 4 | eqid 2229 |
. . 3
| |
| 5 | 1, 4 | oppraddg 14039 |
. 2
|
| 6 | eqidd 2230 |
. 2
| |
| 7 | ringgrp 13964 |
. . 3
| |
| 8 | eqidd 2230 |
. . . 4
| |
| 9 | 5 | oveqdr 6029 |
. . . 4
|
| 10 | 8, 3, 9 | grppropd 13550 |
. . 3
|
| 11 | 7, 10 | mpbid 147 |
. 2
|
| 12 | eqid 2229 |
. . . 4
| |
| 13 | eqid 2229 |
. . . 4
| |
| 14 | 2, 12, 1, 13 | opprmulg 14034 |
. . 3
|
| 15 | 2, 12 | ringcl 13976 |
. . . 4
|
| 16 | 15 | 3com23 1233 |
. . 3
|
| 17 | 14, 16 | eqeltrd 2306 |
. 2
|
| 18 | simpl 109 |
. . . 4
| |
| 19 | simpr3 1029 |
. . . 4
| |
| 20 | simpr2 1028 |
. . . 4
| |
| 21 | simpr1 1027 |
. . . 4
| |
| 22 | 2, 12 | ringass 13979 |
. . . 4
|
| 23 | 18, 19, 20, 21, 22 | syl13anc 1273 |
. . 3
|
| 24 | 2, 12, 1, 13 | opprmulg 14034 |
. . . . . 6
|
| 25 | 24 | 3adant3r1 1236 |
. . . . 5
|
| 26 | 25 | oveq2d 6017 |
. . . 4
|
| 27 | 2, 12 | ringcl 13976 |
. . . . . 6
|
| 28 | 18, 19, 20, 27 | syl3anc 1271 |
. . . . 5
|
| 29 | 2, 12, 1, 13 | opprmulg 14034 |
. . . . 5
|
| 30 | 18, 21, 28, 29 | syl3anc 1271 |
. . . 4
|
| 31 | 26, 30 | eqtrd 2262 |
. . 3
|
| 32 | 14 | oveq1d 6016 |
. . . . 5
|
| 33 | 32 | 3adant3r3 1238 |
. . . 4
|
| 34 | 16 | 3adant3r3 1238 |
. . . . 5
|
| 35 | 2, 12, 1, 13 | opprmulg 14034 |
. . . . 5
|
| 36 | 18, 34, 19, 35 | syl3anc 1271 |
. . . 4
|
| 37 | 33, 36 | eqtrd 2262 |
. . 3
|
| 38 | 23, 31, 37 | 3eqtr4rd 2273 |
. 2
|
| 39 | 2, 4, 12 | ringdir 13982 |
. . . 4
|
| 40 | 18, 20, 19, 21, 39 | syl13anc 1273 |
. . 3
|
| 41 | 2, 4 | ringacl 13993 |
. . . . 5
|
| 42 | 41 | 3adant3r1 1236 |
. . . 4
|
| 43 | 2, 12, 1, 13 | opprmulg 14034 |
. . . 4
|
| 44 | 18, 21, 42, 43 | syl3anc 1271 |
. . 3
|
| 45 | 14 | 3adant3r3 1238 |
. . . 4
|
| 46 | 2, 12, 1, 13 | opprmulg 14034 |
. . . . 5
|
| 47 | 46 | 3adant3r2 1237 |
. . . 4
|
| 48 | 45, 47 | oveq12d 6019 |
. . 3
|
| 49 | 40, 44, 48 | 3eqtr4d 2272 |
. 2
|
| 50 | 2, 4, 12 | ringdi 13981 |
. . . 4
|
| 51 | 18, 19, 21, 20, 50 | syl13anc 1273 |
. . 3
|
| 52 | 2, 4 | ringacl 13993 |
. . . . 5
|
| 53 | 52 | 3adant3r3 1238 |
. . . 4
|
| 54 | 2, 12, 1, 13 | opprmulg 14034 |
. . . 4
|
| 55 | 18, 53, 19, 54 | syl3anc 1271 |
. . 3
|
| 56 | 47, 25 | oveq12d 6019 |
. . 3
|
| 57 | 51, 55, 56 | 3eqtr4d 2272 |
. 2
|
| 58 | eqid 2229 |
. . 3
| |
| 59 | 2, 58 | ringidcl 13983 |
. 2
|
| 60 | simpl 109 |
. . . 4
| |
| 61 | 60, 59 | syl 14 |
. . . 4
|
| 62 | simpr 110 |
. . . 4
| |
| 63 | 2, 12, 1, 13 | opprmulg 14034 |
. . . 4
|
| 64 | 60, 61, 62, 63 | syl3anc 1271 |
. . 3
|
| 65 | 2, 12, 58 | ringridm 13987 |
. . 3
|
| 66 | 64, 65 | eqtrd 2262 |
. 2
|
| 67 | 2, 12, 1, 13 | opprmulg 14034 |
. . . 4
|
| 68 | 60, 62, 61, 67 | syl3anc 1271 |
. . 3
|
| 69 | 2, 12, 58 | ringlidm 13986 |
. . 3
|
| 70 | 68, 69 | eqtrd 2262 |
. 2
|
| 71 | 3, 5, 6, 11, 17, 38, 49, 57, 59, 66, 70 | isringd 14004 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-tpos 6391 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-inn 9111 df-2 9169 df-3 9170 df-ndx 13035 df-slot 13036 df-base 13038 df-sets 13039 df-plusg 13123 df-mulr 13124 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-grp 13536 df-mgp 13884 df-ur 13923 df-ring 13961 df-oppr 14031 |
| This theorem is referenced by: opprringbg 14043 mulgass3 14048 1unit 14071 opprunitd 14074 crngunit 14075 unitmulcl 14077 unitgrp 14080 unitnegcl 14094 unitpropdg 14112 subrguss 14200 subrgunit 14203 isridl 14468 ridl0 14474 ridl1 14475 |
| Copyright terms: Public domain | W3C validator |