| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opprring | Unicode version | ||
| Description: An opposite ring is a ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.) |
| Ref | Expression |
|---|---|
| opprbas.1 |
|
| Ref | Expression |
|---|---|
| opprring |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprbas.1 |
. . 3
| |
| 2 | eqid 2196 |
. . 3
| |
| 3 | 1, 2 | opprbasg 13707 |
. 2
|
| 4 | eqid 2196 |
. . 3
| |
| 5 | 1, 4 | oppraddg 13708 |
. 2
|
| 6 | eqidd 2197 |
. 2
| |
| 7 | ringgrp 13633 |
. . 3
| |
| 8 | eqidd 2197 |
. . . 4
| |
| 9 | 5 | oveqdr 5953 |
. . . 4
|
| 10 | 8, 3, 9 | grppropd 13219 |
. . 3
|
| 11 | 7, 10 | mpbid 147 |
. 2
|
| 12 | eqid 2196 |
. . . 4
| |
| 13 | eqid 2196 |
. . . 4
| |
| 14 | 2, 12, 1, 13 | opprmulg 13703 |
. . 3
|
| 15 | 2, 12 | ringcl 13645 |
. . . 4
|
| 16 | 15 | 3com23 1211 |
. . 3
|
| 17 | 14, 16 | eqeltrd 2273 |
. 2
|
| 18 | simpl 109 |
. . . 4
| |
| 19 | simpr3 1007 |
. . . 4
| |
| 20 | simpr2 1006 |
. . . 4
| |
| 21 | simpr1 1005 |
. . . 4
| |
| 22 | 2, 12 | ringass 13648 |
. . . 4
|
| 23 | 18, 19, 20, 21, 22 | syl13anc 1251 |
. . 3
|
| 24 | 2, 12, 1, 13 | opprmulg 13703 |
. . . . . 6
|
| 25 | 24 | 3adant3r1 1214 |
. . . . 5
|
| 26 | 25 | oveq2d 5941 |
. . . 4
|
| 27 | 2, 12 | ringcl 13645 |
. . . . . 6
|
| 28 | 18, 19, 20, 27 | syl3anc 1249 |
. . . . 5
|
| 29 | 2, 12, 1, 13 | opprmulg 13703 |
. . . . 5
|
| 30 | 18, 21, 28, 29 | syl3anc 1249 |
. . . 4
|
| 31 | 26, 30 | eqtrd 2229 |
. . 3
|
| 32 | 14 | oveq1d 5940 |
. . . . 5
|
| 33 | 32 | 3adant3r3 1216 |
. . . 4
|
| 34 | 16 | 3adant3r3 1216 |
. . . . 5
|
| 35 | 2, 12, 1, 13 | opprmulg 13703 |
. . . . 5
|
| 36 | 18, 34, 19, 35 | syl3anc 1249 |
. . . 4
|
| 37 | 33, 36 | eqtrd 2229 |
. . 3
|
| 38 | 23, 31, 37 | 3eqtr4rd 2240 |
. 2
|
| 39 | 2, 4, 12 | ringdir 13651 |
. . . 4
|
| 40 | 18, 20, 19, 21, 39 | syl13anc 1251 |
. . 3
|
| 41 | 2, 4 | ringacl 13662 |
. . . . 5
|
| 42 | 41 | 3adant3r1 1214 |
. . . 4
|
| 43 | 2, 12, 1, 13 | opprmulg 13703 |
. . . 4
|
| 44 | 18, 21, 42, 43 | syl3anc 1249 |
. . 3
|
| 45 | 14 | 3adant3r3 1216 |
. . . 4
|
| 46 | 2, 12, 1, 13 | opprmulg 13703 |
. . . . 5
|
| 47 | 46 | 3adant3r2 1215 |
. . . 4
|
| 48 | 45, 47 | oveq12d 5943 |
. . 3
|
| 49 | 40, 44, 48 | 3eqtr4d 2239 |
. 2
|
| 50 | 2, 4, 12 | ringdi 13650 |
. . . 4
|
| 51 | 18, 19, 21, 20, 50 | syl13anc 1251 |
. . 3
|
| 52 | 2, 4 | ringacl 13662 |
. . . . 5
|
| 53 | 52 | 3adant3r3 1216 |
. . . 4
|
| 54 | 2, 12, 1, 13 | opprmulg 13703 |
. . . 4
|
| 55 | 18, 53, 19, 54 | syl3anc 1249 |
. . 3
|
| 56 | 47, 25 | oveq12d 5943 |
. . 3
|
| 57 | 51, 55, 56 | 3eqtr4d 2239 |
. 2
|
| 58 | eqid 2196 |
. . 3
| |
| 59 | 2, 58 | ringidcl 13652 |
. 2
|
| 60 | simpl 109 |
. . . 4
| |
| 61 | 60, 59 | syl 14 |
. . . 4
|
| 62 | simpr 110 |
. . . 4
| |
| 63 | 2, 12, 1, 13 | opprmulg 13703 |
. . . 4
|
| 64 | 60, 61, 62, 63 | syl3anc 1249 |
. . 3
|
| 65 | 2, 12, 58 | ringridm 13656 |
. . 3
|
| 66 | 64, 65 | eqtrd 2229 |
. 2
|
| 67 | 2, 12, 1, 13 | opprmulg 13703 |
. . . 4
|
| 68 | 60, 62, 61, 67 | syl3anc 1249 |
. . 3
|
| 69 | 2, 12, 58 | ringlidm 13655 |
. . 3
|
| 70 | 68, 69 | eqtrd 2229 |
. 2
|
| 71 | 3, 5, 6, 11, 17, 38, 49, 57, 59, 66, 70 | isringd 13673 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-tpos 6312 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-3 9067 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-plusg 12793 df-mulr 12794 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-mgp 13553 df-ur 13592 df-ring 13630 df-oppr 13700 |
| This theorem is referenced by: opprringbg 13712 mulgass3 13717 1unit 13739 opprunitd 13742 crngunit 13743 unitmulcl 13745 unitgrp 13748 unitnegcl 13762 unitpropdg 13780 subrguss 13868 subrgunit 13871 isridl 14136 ridl0 14142 ridl1 14143 |
| Copyright terms: Public domain | W3C validator |