| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3ad2antl1 | Unicode version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 |
|
| Ref | Expression |
|---|---|
| 3ad2antl1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 |
. . 3
| |
| 2 | 1 | adantlr 477 |
. 2
|
| 3 | 2 | 3adantl2 1156 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: acexmid 5922 ordiso2 7102 addlocpr 7605 distrlem1prl 7651 distrlem1pru 7652 ltsopr 7665 addcanprlemu 7684 fzo1fzo0n0 10261 prodfap0 11712 prodfrecap 11713 muldvds2 11984 dvds2add 11992 dvds2sub 11993 dvdstr 11995 qusaddvallemg 12986 mulgnnsubcl 13274 mulgpropdg 13304 ringidss 13595 lmodprop2d 13914 cnpnei 14465 upxp 14518 lgsval4lem 15262 |
| Copyright terms: Public domain | W3C validator |