ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3ad2antl1 Unicode version

Theorem 3ad2antl1 1126
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
Hypothesis
Ref Expression
3ad2antl.1  |-  ( (
ph  /\  ch )  ->  th )
Assertion
Ref Expression
3ad2antl1  |-  ( ( ( ph  /\  ps  /\ 
ta )  /\  ch )  ->  th )

Proof of Theorem 3ad2antl1
StepHypRef Expression
1 3ad2antl.1 . . 3  |-  ( (
ph  /\  ch )  ->  th )
21adantlr 466 . 2  |-  ( ( ( ph  /\  ta )  /\  ch )  ->  th )
323adantl2 1121 1  |-  ( ( ( ph  /\  ps  /\ 
ta )  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 945
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 947
This theorem is referenced by:  acexmid  5727  ordiso2  6872  addlocpr  7292  distrlem1prl  7338  distrlem1pru  7339  ltsopr  7352  addcanprlemu  7371  fzo1fzo0n0  9853  muldvds2  11367  dvds2add  11375  dvds2sub  11376  dvdstr  11378  cnpnei  12230  upxp  12283
  Copyright terms: Public domain W3C validator