ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3ad2antl1 Unicode version

Theorem 3ad2antl1 1144
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
Hypothesis
Ref Expression
3ad2antl.1  |-  ( (
ph  /\  ch )  ->  th )
Assertion
Ref Expression
3ad2antl1  |-  ( ( ( ph  /\  ps  /\ 
ta )  /\  ch )  ->  th )

Proof of Theorem 3ad2antl1
StepHypRef Expression
1 3ad2antl.1 . . 3  |-  ( (
ph  /\  ch )  ->  th )
21adantlr 469 . 2  |-  ( ( ( ph  /\  ta )  /\  ch )  ->  th )
323adantl2 1139 1  |-  ( ( ( ph  /\  ps  /\ 
ta )  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 965
This theorem is referenced by:  acexmid  5820  ordiso2  6973  addlocpr  7450  distrlem1prl  7496  distrlem1pru  7497  ltsopr  7510  addcanprlemu  7529  fzo1fzo0n0  10075  prodfap0  11435  prodfrecap  11436  muldvds2  11705  dvds2add  11713  dvds2sub  11714  dvdstr  11716  cnpnei  12590  upxp  12643
  Copyright terms: Public domain W3C validator