ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3ad2antl1 Unicode version

Theorem 3ad2antl1 1161
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
Hypothesis
Ref Expression
3ad2antl.1  |-  ( (
ph  /\  ch )  ->  th )
Assertion
Ref Expression
3ad2antl1  |-  ( ( ( ph  /\  ps  /\ 
ta )  /\  ch )  ->  th )

Proof of Theorem 3ad2antl1
StepHypRef Expression
1 3ad2antl.1 . . 3  |-  ( (
ph  /\  ch )  ->  th )
21adantlr 477 . 2  |-  ( ( ( ph  /\  ta )  /\  ch )  ->  th )
323adantl2 1156 1  |-  ( ( ( ph  /\  ps  /\ 
ta )  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  acexmid  5921  ordiso2  7101  addlocpr  7603  distrlem1prl  7649  distrlem1pru  7650  ltsopr  7663  addcanprlemu  7682  fzo1fzo0n0  10259  prodfap0  11710  prodfrecap  11711  muldvds2  11982  dvds2add  11990  dvds2sub  11991  dvdstr  11993  qusaddvallemg  12976  mulgnnsubcl  13264  mulgpropdg  13294  ringidss  13585  lmodprop2d  13904  cnpnei  14455  upxp  14508  lgsval4lem  15252
  Copyright terms: Public domain W3C validator