ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3ad2antl1 Unicode version

Theorem 3ad2antl1 1161
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
Hypothesis
Ref Expression
3ad2antl.1  |-  ( (
ph  /\  ch )  ->  th )
Assertion
Ref Expression
3ad2antl1  |-  ( ( ( ph  /\  ps  /\ 
ta )  /\  ch )  ->  th )

Proof of Theorem 3ad2antl1
StepHypRef Expression
1 3ad2antl.1 . . 3  |-  ( (
ph  /\  ch )  ->  th )
21adantlr 477 . 2  |-  ( ( ( ph  /\  ta )  /\  ch )  ->  th )
323adantl2 1156 1  |-  ( ( ( ph  /\  ps  /\ 
ta )  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  acexmid  5924  ordiso2  7110  addlocpr  7620  distrlem1prl  7666  distrlem1pru  7667  ltsopr  7680  addcanprlemu  7699  fzo1fzo0n0  10276  prodfap0  11727  prodfrecap  11728  muldvds2  11999  dvds2add  12007  dvds2sub  12008  dvdstr  12010  qusaddvallemg  13035  mulgnnsubcl  13340  mulgpropdg  13370  ringidss  13661  lmodprop2d  13980  cnpnei  14539  upxp  14592  lgsval4lem  15336
  Copyright terms: Public domain W3C validator