Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3ad2antl1 | Unicode version |
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
Ref | Expression |
---|---|
3ad2antl.1 |
Ref | Expression |
---|---|
3ad2antl1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2antl.1 | . . 3 | |
2 | 1 | adantlr 469 | . 2 |
3 | 2 | 3adantl2 1139 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 965 |
This theorem is referenced by: acexmid 5820 ordiso2 6973 addlocpr 7450 distrlem1prl 7496 distrlem1pru 7497 ltsopr 7510 addcanprlemu 7529 fzo1fzo0n0 10075 prodfap0 11435 prodfrecap 11436 muldvds2 11705 dvds2add 11713 dvds2sub 11714 dvdstr 11716 cnpnei 12590 upxp 12643 |
Copyright terms: Public domain | W3C validator |