| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3ad2antl1 | Unicode version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 |
|
| Ref | Expression |
|---|---|
| 3ad2antl1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 |
. . 3
| |
| 2 | 1 | adantlr 477 |
. 2
|
| 3 | 2 | 3adantl2 1157 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: acexmid 5945 f1oen4g 6845 f1dom4g 6846 ordiso2 7139 addlocpr 7651 distrlem1prl 7697 distrlem1pru 7698 ltsopr 7711 addcanprlemu 7730 fzo1fzo0n0 10309 pfxsuffeqwrdeq 11152 prodfap0 11889 prodfrecap 11890 muldvds2 12161 dvds2add 12169 dvds2sub 12170 dvdstr 12172 qusaddvallemg 13198 mulgnnsubcl 13503 mulgpropdg 13533 ringidss 13824 lmodprop2d 14143 cnpnei 14724 upxp 14777 lgsval4lem 15521 |
| Copyright terms: Public domain | W3C validator |