| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3ad2antl1 | Unicode version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 |
|
| Ref | Expression |
|---|---|
| 3ad2antl1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 |
. . 3
| |
| 2 | 1 | adantlr 477 |
. 2
|
| 3 | 2 | 3adantl2 1178 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: acexmid 6000 f1oen4g 6903 f1dom4g 6904 ordiso2 7202 addlocpr 7723 distrlem1prl 7769 distrlem1pru 7770 ltsopr 7783 addcanprlemu 7802 fzo1fzo0n0 10383 pfxsuffeqwrdeq 11230 prodfap0 12056 prodfrecap 12057 muldvds2 12328 dvds2add 12336 dvds2sub 12337 dvdstr 12339 qusaddvallemg 13366 mulgnnsubcl 13671 mulgpropdg 13701 ringidss 13992 lmodprop2d 14312 cnpnei 14893 upxp 14946 lgsval4lem 15690 |
| Copyright terms: Public domain | W3C validator |