ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lediv2a Unicode version

Theorem lediv2a 8610
Description: Division of both sides of 'less than or equal to' into a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007.)
Assertion
Ref Expression
lediv2a  |-  ( ( ( ( A  e.  RR  /\  0  < 
A )  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  <_  C ) )  /\  A  <_  B )  -> 
( C  /  B
)  <_  ( C  /  A ) )

Proof of Theorem lediv2a
StepHypRef Expression
1 pm3.2 138 . . . . . . 7  |-  ( C  e.  RR  ->  ( C  e.  RR  ->  ( C  e.  RR  /\  C  e.  RR )
) )
21pm2.43i 49 . . . . . 6  |-  ( C  e.  RR  ->  ( C  e.  RR  /\  C  e.  RR ) )
32adantr 272 . . . . 5  |-  ( ( C  e.  RR  /\  0  <_  C )  -> 
( C  e.  RR  /\  C  e.  RR ) )
4 leid 7812 . . . . . . 7  |-  ( C  e.  RR  ->  C  <_  C )
54anim2i 337 . . . . . 6  |-  ( ( 0  <_  C  /\  C  e.  RR )  ->  ( 0  <_  C  /\  C  <_  C ) )
65ancoms 266 . . . . 5  |-  ( ( C  e.  RR  /\  0  <_  C )  -> 
( 0  <_  C  /\  C  <_  C ) )
73, 6jca 302 . . . 4  |-  ( ( C  e.  RR  /\  0  <_  C )  -> 
( ( C  e.  RR  /\  C  e.  RR )  /\  (
0  <_  C  /\  C  <_  C ) ) )
87ad2antlr 478 . . 3  |-  ( ( ( ( A  e.  RR  /\  0  < 
A )  /\  ( C  e.  RR  /\  0  <_  C ) )  /\  A  <_  B )  -> 
( ( C  e.  RR  /\  C  e.  RR )  /\  (
0  <_  C  /\  C  <_  C ) ) )
983adantl2 1121 . 2  |-  ( ( ( ( A  e.  RR  /\  0  < 
A )  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  <_  C ) )  /\  A  <_  B )  -> 
( ( C  e.  RR  /\  C  e.  RR )  /\  (
0  <_  C  /\  C  <_  C ) ) )
10 id 19 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  e.  RR  /\  B  e.  RR ) )
1110ad2ant2r 498 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( A  e.  RR  /\  B  e.  RR ) )
1211adantr 272 . . . 4  |-  ( ( ( ( A  e.  RR  /\  0  < 
A )  /\  ( B  e.  RR  /\  0  <  B ) )  /\  A  <_  B )  -> 
( A  e.  RR  /\  B  e.  RR ) )
13 simplr 502 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
0  <  A )
1413anim1i 336 . . . 4  |-  ( ( ( ( A  e.  RR  /\  0  < 
A )  /\  ( B  e.  RR  /\  0  <  B ) )  /\  A  <_  B )  -> 
( 0  <  A  /\  A  <_  B ) )
1512, 14jca 302 . . 3  |-  ( ( ( ( A  e.  RR  /\  0  < 
A )  /\  ( B  e.  RR  /\  0  <  B ) )  /\  A  <_  B )  -> 
( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <  A  /\  A  <_  B ) ) )
16153adantl3 1122 . 2  |-  ( ( ( ( A  e.  RR  /\  0  < 
A )  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  <_  C ) )  /\  A  <_  B )  -> 
( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <  A  /\  A  <_  B ) ) )
17 lediv12a 8609 . 2  |-  ( ( ( ( C  e.  RR  /\  C  e.  RR )  /\  (
0  <_  C  /\  C  <_  C ) )  /\  ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <  A  /\  A  <_  B ) ) )  ->  ( C  /  B )  <_  ( C  /  A ) )
189, 16, 17syl2anc 406 1  |-  ( ( ( ( A  e.  RR  /\  0  < 
A )  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  <_  C ) )  /\  A  <_  B )  -> 
( C  /  B
)  <_  ( C  /  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 945    e. wcel 1463   class class class wbr 3897  (class class class)co 5740   RRcr 7583   0cc0 7584    < clt 7764    <_ cle 7765    / cdiv 8392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-id 4183  df-po 4186  df-iso 4187  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-iota 5056  df-fun 5093  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8393
This theorem is referenced by:  lediv2ad  9452
  Copyright terms: Public domain W3C validator