Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnmord | Unicode version |
Description: Ordering property of multiplication. Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 22-Jan-1996.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
nnmord |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnmordi 6456 | . . . . . 6 | |
2 | 1 | ex 114 | . . . . 5 |
3 | 2 | com23 78 | . . . 4 |
4 | 3 | impd 252 | . . 3 |
5 | 4 | 3adant1 1000 | . 2 |
6 | ne0i 3400 | . . . . . . . 8 | |
7 | nnm0r 6419 | . . . . . . . . . 10 | |
8 | oveq1 5825 | . . . . . . . . . . 11 | |
9 | 8 | eqeq1d 2166 | . . . . . . . . . 10 |
10 | 7, 9 | syl5ibrcom 156 | . . . . . . . . 9 |
11 | 10 | necon3d 2371 | . . . . . . . 8 |
12 | 6, 11 | syl5 32 | . . . . . . 7 |
13 | 12 | adantr 274 | . . . . . 6 |
14 | nn0eln0 4577 | . . . . . . 7 | |
15 | 14 | adantl 275 | . . . . . 6 |
16 | 13, 15 | sylibrd 168 | . . . . 5 |
17 | 16 | 3adant1 1000 | . . . 4 |
18 | oveq2 5826 | . . . . . . . . . 10 | |
19 | 18 | a1i 9 | . . . . . . . . 9 |
20 | nnmordi 6456 | . . . . . . . . . 10 | |
21 | 20 | 3adantl2 1139 | . . . . . . . . 9 |
22 | 19, 21 | orim12d 776 | . . . . . . . 8 |
23 | 22 | con3d 621 | . . . . . . 7 |
24 | simpl3 987 | . . . . . . . . 9 | |
25 | simpl1 985 | . . . . . . . . 9 | |
26 | nnmcl 6421 | . . . . . . . . 9 | |
27 | 24, 25, 26 | syl2anc 409 | . . . . . . . 8 |
28 | simpl2 986 | . . . . . . . . 9 | |
29 | nnmcl 6421 | . . . . . . . . 9 | |
30 | 24, 28, 29 | syl2anc 409 | . . . . . . . 8 |
31 | nntri2 6434 | . . . . . . . 8 | |
32 | 27, 30, 31 | syl2anc 409 | . . . . . . 7 |
33 | nntri2 6434 | . . . . . . . 8 | |
34 | 25, 28, 33 | syl2anc 409 | . . . . . . 7 |
35 | 23, 32, 34 | 3imtr4d 202 | . . . . . 6 |
36 | 35 | ex 114 | . . . . 5 |
37 | 36 | com23 78 | . . . 4 |
38 | 17, 37 | mpdd 41 | . . 3 |
39 | 38, 17 | jcad 305 | . 2 |
40 | 5, 39 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 w3a 963 wceq 1335 wcel 2128 wne 2327 c0 3394 com 4547 (class class class)co 5818 comu 6355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4252 df-iord 4325 df-on 4327 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-recs 6246 df-irdg 6311 df-oadd 6361 df-omul 6362 |
This theorem is referenced by: nnmword 6458 ltmpig 7242 |
Copyright terms: Public domain | W3C validator |