ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmord Unicode version

Theorem nnmord 6379
Description: Ordering property of multiplication. Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 22-Jan-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnmord  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  e.  B  /\  (/)  e.  C )  <-> 
( C  .o  A
)  e.  ( C  .o  B ) ) )

Proof of Theorem nnmord
StepHypRef Expression
1 nnmordi 6378 . . . . . 6  |-  ( ( ( B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  e.  B  ->  ( C  .o  A )  e.  ( C  .o  B ) ) )
21ex 114 . . . . 5  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( (/)  e.  C  ->  ( A  e.  B  ->  ( C  .o  A
)  e.  ( C  .o  B ) ) ) )
32com23 78 . . . 4  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( A  e.  B  ->  ( (/)  e.  C  ->  ( C  .o  A
)  e.  ( C  .o  B ) ) ) )
43impd 252 . . 3  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( ( A  e.  B  /\  (/)  e.  C
)  ->  ( C  .o  A )  e.  ( C  .o  B ) ) )
543adant1 982 . 2  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  e.  B  /\  (/)  e.  C )  ->  ( C  .o  A )  e.  ( C  .o  B ) ) )
6 ne0i 3337 . . . . . . . 8  |-  ( ( C  .o  A )  e.  ( C  .o  B )  ->  ( C  .o  B )  =/=  (/) )
7 nnm0r 6341 . . . . . . . . . 10  |-  ( B  e.  om  ->  ( (/) 
.o  B )  =  (/) )
8 oveq1 5747 . . . . . . . . . . 11  |-  ( C  =  (/)  ->  ( C  .o  B )  =  ( (/)  .o  B
) )
98eqeq1d 2124 . . . . . . . . . 10  |-  ( C  =  (/)  ->  ( ( C  .o  B )  =  (/)  <->  ( (/)  .o  B
)  =  (/) ) )
107, 9syl5ibrcom 156 . . . . . . . . 9  |-  ( B  e.  om  ->  ( C  =  (/)  ->  ( C  .o  B )  =  (/) ) )
1110necon3d 2327 . . . . . . . 8  |-  ( B  e.  om  ->  (
( C  .o  B
)  =/=  (/)  ->  C  =/=  (/) ) )
126, 11syl5 32 . . . . . . 7  |-  ( B  e.  om  ->  (
( C  .o  A
)  e.  ( C  .o  B )  ->  C  =/=  (/) ) )
1312adantr 272 . . . . . 6  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( ( C  .o  A )  e.  ( C  .o  B )  ->  C  =/=  (/) ) )
14 nn0eln0 4501 . . . . . . 7  |-  ( C  e.  om  ->  ( (/) 
e.  C  <->  C  =/=  (/) ) )
1514adantl 273 . . . . . 6  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( (/)  e.  C  <->  C  =/=  (/) ) )
1613, 15sylibrd 168 . . . . 5  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( ( C  .o  A )  e.  ( C  .o  B )  ->  (/)  e.  C ) )
17163adant1 982 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( C  .o  A
)  e.  ( C  .o  B )  ->  (/) 
e.  C ) )
18 oveq2 5748 . . . . . . . . . 10  |-  ( A  =  B  ->  ( C  .o  A )  =  ( C  .o  B
) )
1918a1i 9 . . . . . . . . 9  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  =  B  ->  ( C  .o  A )  =  ( C  .o  B ) ) )
20 nnmordi 6378 . . . . . . . . . 10  |-  ( ( ( A  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( B  e.  A  ->  ( C  .o  B )  e.  ( C  .o  A ) ) )
21203adantl2 1121 . . . . . . . . 9  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( B  e.  A  ->  ( C  .o  B )  e.  ( C  .o  A ) ) )
2219, 21orim12d 758 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( ( A  =  B  \/  B  e.  A )  ->  (
( C  .o  A
)  =  ( C  .o  B )  \/  ( C  .o  B
)  e.  ( C  .o  A ) ) ) )
2322con3d 603 . . . . . . 7  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( -.  (
( C  .o  A
)  =  ( C  .o  B )  \/  ( C  .o  B
)  e.  ( C  .o  A ) )  ->  -.  ( A  =  B  \/  B  e.  A ) ) )
24 simpl3 969 . . . . . . . . 9  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  C  e.  om )
25 simpl1 967 . . . . . . . . 9  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  A  e.  om )
26 nnmcl 6343 . . . . . . . . 9  |-  ( ( C  e.  om  /\  A  e.  om )  ->  ( C  .o  A
)  e.  om )
2724, 25, 26syl2anc 406 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( C  .o  A )  e.  om )
28 simpl2 968 . . . . . . . . 9  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  B  e.  om )
29 nnmcl 6343 . . . . . . . . 9  |-  ( ( C  e.  om  /\  B  e.  om )  ->  ( C  .o  B
)  e.  om )
3024, 28, 29syl2anc 406 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( C  .o  B )  e.  om )
31 nntri2 6356 . . . . . . . 8  |-  ( ( ( C  .o  A
)  e.  om  /\  ( C  .o  B
)  e.  om )  ->  ( ( C  .o  A )  e.  ( C  .o  B )  <->  -.  ( ( C  .o  A )  =  ( C  .o  B )  \/  ( C  .o  B )  e.  ( C  .o  A ) ) ) )
3227, 30, 31syl2anc 406 . . . . . . 7  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( ( C  .o  A )  e.  ( C  .o  B
)  <->  -.  ( ( C  .o  A )  =  ( C  .o  B
)  \/  ( C  .o  B )  e.  ( C  .o  A
) ) ) )
33 nntri2 6356 . . . . . . . 8  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A
) ) )
3425, 28, 33syl2anc 406 . . . . . . 7  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A ) ) )
3523, 32, 343imtr4d 202 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( ( C  .o  A )  e.  ( C  .o  B
)  ->  A  e.  B ) )
3635ex 114 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( (/) 
e.  C  ->  (
( C  .o  A
)  e.  ( C  .o  B )  ->  A  e.  B )
) )
3736com23 78 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( C  .o  A
)  e.  ( C  .o  B )  -> 
( (/)  e.  C  ->  A  e.  B )
) )
3817, 37mpdd 41 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( C  .o  A
)  e.  ( C  .o  B )  ->  A  e.  B )
)
3938, 17jcad 303 . 2  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( C  .o  A
)  e.  ( C  .o  B )  -> 
( A  e.  B  /\  (/)  e.  C ) ) )
405, 39impbid 128 1  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  e.  B  /\  (/)  e.  C )  <-> 
( C  .o  A
)  e.  ( C  .o  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 680    /\ w3a 945    = wceq 1314    e. wcel 1463    =/= wne 2283   (/)c0 3331   omcom 4472  (class class class)co 5740    .o comu 6277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-iord 4256  df-on 4258  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-irdg 6233  df-oadd 6283  df-omul 6284
This theorem is referenced by:  nnmword  6380  ltmpig  7111
  Copyright terms: Public domain W3C validator