ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmord Unicode version

Theorem nnmord 6457
Description: Ordering property of multiplication. Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 22-Jan-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnmord  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  e.  B  /\  (/)  e.  C )  <-> 
( C  .o  A
)  e.  ( C  .o  B ) ) )

Proof of Theorem nnmord
StepHypRef Expression
1 nnmordi 6456 . . . . . 6  |-  ( ( ( B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  e.  B  ->  ( C  .o  A )  e.  ( C  .o  B ) ) )
21ex 114 . . . . 5  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( (/)  e.  C  ->  ( A  e.  B  ->  ( C  .o  A
)  e.  ( C  .o  B ) ) ) )
32com23 78 . . . 4  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( A  e.  B  ->  ( (/)  e.  C  ->  ( C  .o  A
)  e.  ( C  .o  B ) ) ) )
43impd 252 . . 3  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( ( A  e.  B  /\  (/)  e.  C
)  ->  ( C  .o  A )  e.  ( C  .o  B ) ) )
543adant1 1000 . 2  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  e.  B  /\  (/)  e.  C )  ->  ( C  .o  A )  e.  ( C  .o  B ) ) )
6 ne0i 3400 . . . . . . . 8  |-  ( ( C  .o  A )  e.  ( C  .o  B )  ->  ( C  .o  B )  =/=  (/) )
7 nnm0r 6419 . . . . . . . . . 10  |-  ( B  e.  om  ->  ( (/) 
.o  B )  =  (/) )
8 oveq1 5825 . . . . . . . . . . 11  |-  ( C  =  (/)  ->  ( C  .o  B )  =  ( (/)  .o  B
) )
98eqeq1d 2166 . . . . . . . . . 10  |-  ( C  =  (/)  ->  ( ( C  .o  B )  =  (/)  <->  ( (/)  .o  B
)  =  (/) ) )
107, 9syl5ibrcom 156 . . . . . . . . 9  |-  ( B  e.  om  ->  ( C  =  (/)  ->  ( C  .o  B )  =  (/) ) )
1110necon3d 2371 . . . . . . . 8  |-  ( B  e.  om  ->  (
( C  .o  B
)  =/=  (/)  ->  C  =/=  (/) ) )
126, 11syl5 32 . . . . . . 7  |-  ( B  e.  om  ->  (
( C  .o  A
)  e.  ( C  .o  B )  ->  C  =/=  (/) ) )
1312adantr 274 . . . . . 6  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( ( C  .o  A )  e.  ( C  .o  B )  ->  C  =/=  (/) ) )
14 nn0eln0 4577 . . . . . . 7  |-  ( C  e.  om  ->  ( (/) 
e.  C  <->  C  =/=  (/) ) )
1514adantl 275 . . . . . 6  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( (/)  e.  C  <->  C  =/=  (/) ) )
1613, 15sylibrd 168 . . . . 5  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( ( C  .o  A )  e.  ( C  .o  B )  ->  (/)  e.  C ) )
17163adant1 1000 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( C  .o  A
)  e.  ( C  .o  B )  ->  (/) 
e.  C ) )
18 oveq2 5826 . . . . . . . . . 10  |-  ( A  =  B  ->  ( C  .o  A )  =  ( C  .o  B
) )
1918a1i 9 . . . . . . . . 9  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  =  B  ->  ( C  .o  A )  =  ( C  .o  B ) ) )
20 nnmordi 6456 . . . . . . . . . 10  |-  ( ( ( A  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( B  e.  A  ->  ( C  .o  B )  e.  ( C  .o  A ) ) )
21203adantl2 1139 . . . . . . . . 9  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( B  e.  A  ->  ( C  .o  B )  e.  ( C  .o  A ) ) )
2219, 21orim12d 776 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( ( A  =  B  \/  B  e.  A )  ->  (
( C  .o  A
)  =  ( C  .o  B )  \/  ( C  .o  B
)  e.  ( C  .o  A ) ) ) )
2322con3d 621 . . . . . . 7  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( -.  (
( C  .o  A
)  =  ( C  .o  B )  \/  ( C  .o  B
)  e.  ( C  .o  A ) )  ->  -.  ( A  =  B  \/  B  e.  A ) ) )
24 simpl3 987 . . . . . . . . 9  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  C  e.  om )
25 simpl1 985 . . . . . . . . 9  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  A  e.  om )
26 nnmcl 6421 . . . . . . . . 9  |-  ( ( C  e.  om  /\  A  e.  om )  ->  ( C  .o  A
)  e.  om )
2724, 25, 26syl2anc 409 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( C  .o  A )  e.  om )
28 simpl2 986 . . . . . . . . 9  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  B  e.  om )
29 nnmcl 6421 . . . . . . . . 9  |-  ( ( C  e.  om  /\  B  e.  om )  ->  ( C  .o  B
)  e.  om )
3024, 28, 29syl2anc 409 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( C  .o  B )  e.  om )
31 nntri2 6434 . . . . . . . 8  |-  ( ( ( C  .o  A
)  e.  om  /\  ( C  .o  B
)  e.  om )  ->  ( ( C  .o  A )  e.  ( C  .o  B )  <->  -.  ( ( C  .o  A )  =  ( C  .o  B )  \/  ( C  .o  B )  e.  ( C  .o  A ) ) ) )
3227, 30, 31syl2anc 409 . . . . . . 7  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( ( C  .o  A )  e.  ( C  .o  B
)  <->  -.  ( ( C  .o  A )  =  ( C  .o  B
)  \/  ( C  .o  B )  e.  ( C  .o  A
) ) ) )
33 nntri2 6434 . . . . . . . 8  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A
) ) )
3425, 28, 33syl2anc 409 . . . . . . 7  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A ) ) )
3523, 32, 343imtr4d 202 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( ( C  .o  A )  e.  ( C  .o  B
)  ->  A  e.  B ) )
3635ex 114 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( (/) 
e.  C  ->  (
( C  .o  A
)  e.  ( C  .o  B )  ->  A  e.  B )
) )
3736com23 78 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( C  .o  A
)  e.  ( C  .o  B )  -> 
( (/)  e.  C  ->  A  e.  B )
) )
3817, 37mpdd 41 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( C  .o  A
)  e.  ( C  .o  B )  ->  A  e.  B )
)
3938, 17jcad 305 . 2  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( C  .o  A
)  e.  ( C  .o  B )  -> 
( A  e.  B  /\  (/)  e.  C ) ) )
405, 39impbid 128 1  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  e.  B  /\  (/)  e.  C )  <-> 
( C  .o  A
)  e.  ( C  .o  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 963    = wceq 1335    e. wcel 2128    =/= wne 2327   (/)c0 3394   omcom 4547  (class class class)co 5818    .o comu 6355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-iord 4325  df-on 4327  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-irdg 6311  df-oadd 6361  df-omul 6362
This theorem is referenced by:  nnmword  6458  ltmpig  7242
  Copyright terms: Public domain W3C validator