Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnmord | Unicode version |
Description: Ordering property of multiplication. Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 22-Jan-1996.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
nnmord |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnmordi 6484 | . . . . . 6 | |
2 | 1 | ex 114 | . . . . 5 |
3 | 2 | com23 78 | . . . 4 |
4 | 3 | impd 252 | . . 3 |
5 | 4 | 3adant1 1005 | . 2 |
6 | ne0i 3415 | . . . . . . . 8 | |
7 | nnm0r 6447 | . . . . . . . . . 10 | |
8 | oveq1 5849 | . . . . . . . . . . 11 | |
9 | 8 | eqeq1d 2174 | . . . . . . . . . 10 |
10 | 7, 9 | syl5ibrcom 156 | . . . . . . . . 9 |
11 | 10 | necon3d 2380 | . . . . . . . 8 |
12 | 6, 11 | syl5 32 | . . . . . . 7 |
13 | 12 | adantr 274 | . . . . . 6 |
14 | nn0eln0 4597 | . . . . . . 7 | |
15 | 14 | adantl 275 | . . . . . 6 |
16 | 13, 15 | sylibrd 168 | . . . . 5 |
17 | 16 | 3adant1 1005 | . . . 4 |
18 | oveq2 5850 | . . . . . . . . . 10 | |
19 | 18 | a1i 9 | . . . . . . . . 9 |
20 | nnmordi 6484 | . . . . . . . . . 10 | |
21 | 20 | 3adantl2 1144 | . . . . . . . . 9 |
22 | 19, 21 | orim12d 776 | . . . . . . . 8 |
23 | 22 | con3d 621 | . . . . . . 7 |
24 | simpl3 992 | . . . . . . . . 9 | |
25 | simpl1 990 | . . . . . . . . 9 | |
26 | nnmcl 6449 | . . . . . . . . 9 | |
27 | 24, 25, 26 | syl2anc 409 | . . . . . . . 8 |
28 | simpl2 991 | . . . . . . . . 9 | |
29 | nnmcl 6449 | . . . . . . . . 9 | |
30 | 24, 28, 29 | syl2anc 409 | . . . . . . . 8 |
31 | nntri2 6462 | . . . . . . . 8 | |
32 | 27, 30, 31 | syl2anc 409 | . . . . . . 7 |
33 | nntri2 6462 | . . . . . . . 8 | |
34 | 25, 28, 33 | syl2anc 409 | . . . . . . 7 |
35 | 23, 32, 34 | 3imtr4d 202 | . . . . . 6 |
36 | 35 | ex 114 | . . . . 5 |
37 | 36 | com23 78 | . . . 4 |
38 | 17, 37 | mpdd 41 | . . 3 |
39 | 38, 17 | jcad 305 | . 2 |
40 | 5, 39 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 w3a 968 wceq 1343 wcel 2136 wne 2336 c0 3409 com 4567 (class class class)co 5842 comu 6382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-oadd 6388 df-omul 6389 |
This theorem is referenced by: nnmword 6486 ltmpig 7280 |
Copyright terms: Public domain | W3C validator |