ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zdiv Unicode version

Theorem zdiv 9343
Description: Two ways to express " M divides  N. (Contributed by NM, 3-Oct-2008.)
Assertion
Ref Expression
zdiv  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( E. k  e.  ZZ  ( M  x.  k )  =  N  <-> 
( N  /  M
)  e.  ZZ ) )
Distinct variable groups:    k, M    k, N

Proof of Theorem zdiv
StepHypRef Expression
1 nnap0 8950 . . 3  |-  ( M  e.  NN  ->  M #  0 )
21adantr 276 . 2  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  M #  0 )
3 nncn 8929 . . 3  |-  ( M  e.  NN  ->  M  e.  CC )
4 zcn 9260 . . 3  |-  ( N  e.  ZZ  ->  N  e.  CC )
5 zcn 9260 . . . . . . . . . . 11  |-  ( k  e.  ZZ  ->  k  e.  CC )
6 divcanap3 8657 . . . . . . . . . . . . 13  |-  ( ( k  e.  CC  /\  M  e.  CC  /\  M #  0 )  ->  (
( M  x.  k
)  /  M )  =  k )
763coml 1210 . . . . . . . . . . . 12  |-  ( ( M  e.  CC  /\  M #  0  /\  k  e.  CC )  ->  (
( M  x.  k
)  /  M )  =  k )
873expa 1203 . . . . . . . . . . 11  |-  ( ( ( M  e.  CC  /\  M #  0 )  /\  k  e.  CC )  ->  ( ( M  x.  k )  /  M
)  =  k )
95, 8sylan2 286 . . . . . . . . . 10  |-  ( ( ( M  e.  CC  /\  M #  0 )  /\  k  e.  ZZ )  ->  ( ( M  x.  k )  /  M
)  =  k )
1093adantl2 1154 . . . . . . . . 9  |-  ( ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  /\  k  e.  ZZ )  ->  (
( M  x.  k
)  /  M )  =  k )
11 oveq1 5884 . . . . . . . . 9  |-  ( ( M  x.  k )  =  N  ->  (
( M  x.  k
)  /  M )  =  ( N  /  M ) )
1210, 11sylan9req 2231 . . . . . . . 8  |-  ( ( ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  /\  k  e.  ZZ )  /\  ( M  x.  k )  =  N )  ->  k  =  ( N  /  M ) )
13 simplr 528 . . . . . . . 8  |-  ( ( ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  /\  k  e.  ZZ )  /\  ( M  x.  k )  =  N )  ->  k  e.  ZZ )
1412, 13eqeltrrd 2255 . . . . . . 7  |-  ( ( ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  /\  k  e.  ZZ )  /\  ( M  x.  k )  =  N )  ->  ( N  /  M )  e.  ZZ )
1514exp31 364 . . . . . 6  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  ->  (
k  e.  ZZ  ->  ( ( M  x.  k
)  =  N  -> 
( N  /  M
)  e.  ZZ ) ) )
1615rexlimdv 2593 . . . . 5  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  ->  ( E. k  e.  ZZ  ( M  x.  k
)  =  N  -> 
( N  /  M
)  e.  ZZ ) )
17 divcanap2 8639 . . . . . . 7  |-  ( ( N  e.  CC  /\  M  e.  CC  /\  M #  0 )  ->  ( M  x.  ( N  /  M ) )  =  N )
18173com12 1207 . . . . . 6  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  ->  ( M  x.  ( N  /  M ) )  =  N )
19 oveq2 5885 . . . . . . . . 9  |-  ( k  =  ( N  /  M )  ->  ( M  x.  k )  =  ( M  x.  ( N  /  M
) ) )
2019eqeq1d 2186 . . . . . . . 8  |-  ( k  =  ( N  /  M )  ->  (
( M  x.  k
)  =  N  <->  ( M  x.  ( N  /  M
) )  =  N ) )
2120rspcev 2843 . . . . . . 7  |-  ( ( ( N  /  M
)  e.  ZZ  /\  ( M  x.  ( N  /  M ) )  =  N )  ->  E. k  e.  ZZ  ( M  x.  k
)  =  N )
2221expcom 116 . . . . . 6  |-  ( ( M  x.  ( N  /  M ) )  =  N  ->  (
( N  /  M
)  e.  ZZ  ->  E. k  e.  ZZ  ( M  x.  k )  =  N ) )
2318, 22syl 14 . . . . 5  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  ->  (
( N  /  M
)  e.  ZZ  ->  E. k  e.  ZZ  ( M  x.  k )  =  N ) )
2416, 23impbid 129 . . . 4  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  ->  ( E. k  e.  ZZ  ( M  x.  k
)  =  N  <->  ( N  /  M )  e.  ZZ ) )
25243expia 1205 . . 3  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( M #  0  -> 
( E. k  e.  ZZ  ( M  x.  k )  =  N  <-> 
( N  /  M
)  e.  ZZ ) ) )
263, 4, 25syl2an 289 . 2  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M #  0  -> 
( E. k  e.  ZZ  ( M  x.  k )  =  N  <-> 
( N  /  M
)  e.  ZZ ) ) )
272, 26mpd 13 1  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( E. k  e.  ZZ  ( M  x.  k )  =  N  <-> 
( N  /  M
)  e.  ZZ ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   E.wrex 2456   class class class wbr 4005  (class class class)co 5877   CCcc 7811   0cc0 7813    x. cmul 7818   # cap 8540    / cdiv 8631   NNcn 8921   ZZcz 9255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-z 9256
This theorem is referenced by:  addmodlteq  10400
  Copyright terms: Public domain W3C validator