ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zdiv Unicode version

Theorem zdiv 9496
Description: Two ways to express " M divides  N. (Contributed by NM, 3-Oct-2008.)
Assertion
Ref Expression
zdiv  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( E. k  e.  ZZ  ( M  x.  k )  =  N  <-> 
( N  /  M
)  e.  ZZ ) )
Distinct variable groups:    k, M    k, N

Proof of Theorem zdiv
StepHypRef Expression
1 nnap0 9100 . . 3  |-  ( M  e.  NN  ->  M #  0 )
21adantr 276 . 2  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  M #  0 )
3 nncn 9079 . . 3  |-  ( M  e.  NN  ->  M  e.  CC )
4 zcn 9412 . . 3  |-  ( N  e.  ZZ  ->  N  e.  CC )
5 zcn 9412 . . . . . . . . . . 11  |-  ( k  e.  ZZ  ->  k  e.  CC )
6 divcanap3 8806 . . . . . . . . . . . . 13  |-  ( ( k  e.  CC  /\  M  e.  CC  /\  M #  0 )  ->  (
( M  x.  k
)  /  M )  =  k )
763coml 1213 . . . . . . . . . . . 12  |-  ( ( M  e.  CC  /\  M #  0  /\  k  e.  CC )  ->  (
( M  x.  k
)  /  M )  =  k )
873expa 1206 . . . . . . . . . . 11  |-  ( ( ( M  e.  CC  /\  M #  0 )  /\  k  e.  CC )  ->  ( ( M  x.  k )  /  M
)  =  k )
95, 8sylan2 286 . . . . . . . . . 10  |-  ( ( ( M  e.  CC  /\  M #  0 )  /\  k  e.  ZZ )  ->  ( ( M  x.  k )  /  M
)  =  k )
1093adantl2 1157 . . . . . . . . 9  |-  ( ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  /\  k  e.  ZZ )  ->  (
( M  x.  k
)  /  M )  =  k )
11 oveq1 5974 . . . . . . . . 9  |-  ( ( M  x.  k )  =  N  ->  (
( M  x.  k
)  /  M )  =  ( N  /  M ) )
1210, 11sylan9req 2261 . . . . . . . 8  |-  ( ( ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  /\  k  e.  ZZ )  /\  ( M  x.  k )  =  N )  ->  k  =  ( N  /  M ) )
13 simplr 528 . . . . . . . 8  |-  ( ( ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  /\  k  e.  ZZ )  /\  ( M  x.  k )  =  N )  ->  k  e.  ZZ )
1412, 13eqeltrrd 2285 . . . . . . 7  |-  ( ( ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  /\  k  e.  ZZ )  /\  ( M  x.  k )  =  N )  ->  ( N  /  M )  e.  ZZ )
1514exp31 364 . . . . . 6  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  ->  (
k  e.  ZZ  ->  ( ( M  x.  k
)  =  N  -> 
( N  /  M
)  e.  ZZ ) ) )
1615rexlimdv 2624 . . . . 5  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  ->  ( E. k  e.  ZZ  ( M  x.  k
)  =  N  -> 
( N  /  M
)  e.  ZZ ) )
17 divcanap2 8788 . . . . . . 7  |-  ( ( N  e.  CC  /\  M  e.  CC  /\  M #  0 )  ->  ( M  x.  ( N  /  M ) )  =  N )
18173com12 1210 . . . . . 6  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  ->  ( M  x.  ( N  /  M ) )  =  N )
19 oveq2 5975 . . . . . . . . 9  |-  ( k  =  ( N  /  M )  ->  ( M  x.  k )  =  ( M  x.  ( N  /  M
) ) )
2019eqeq1d 2216 . . . . . . . 8  |-  ( k  =  ( N  /  M )  ->  (
( M  x.  k
)  =  N  <->  ( M  x.  ( N  /  M
) )  =  N ) )
2120rspcev 2884 . . . . . . 7  |-  ( ( ( N  /  M
)  e.  ZZ  /\  ( M  x.  ( N  /  M ) )  =  N )  ->  E. k  e.  ZZ  ( M  x.  k
)  =  N )
2221expcom 116 . . . . . 6  |-  ( ( M  x.  ( N  /  M ) )  =  N  ->  (
( N  /  M
)  e.  ZZ  ->  E. k  e.  ZZ  ( M  x.  k )  =  N ) )
2318, 22syl 14 . . . . 5  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  ->  (
( N  /  M
)  e.  ZZ  ->  E. k  e.  ZZ  ( M  x.  k )  =  N ) )
2416, 23impbid 129 . . . 4  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  ->  ( E. k  e.  ZZ  ( M  x.  k
)  =  N  <->  ( N  /  M )  e.  ZZ ) )
25243expia 1208 . . 3  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( M #  0  -> 
( E. k  e.  ZZ  ( M  x.  k )  =  N  <-> 
( N  /  M
)  e.  ZZ ) ) )
263, 4, 25syl2an 289 . 2  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M #  0  -> 
( E. k  e.  ZZ  ( M  x.  k )  =  N  <-> 
( N  /  M
)  e.  ZZ ) ) )
272, 26mpd 13 1  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( E. k  e.  ZZ  ( M  x.  k )  =  N  <-> 
( N  /  M
)  e.  ZZ ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   E.wrex 2487   class class class wbr 4059  (class class class)co 5967   CCcc 7958   0cc0 7960    x. cmul 7965   # cap 8689    / cdiv 8780   NNcn 9071   ZZcz 9407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-z 9408
This theorem is referenced by:  addmodlteq  10580
  Copyright terms: Public domain W3C validator