ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zdiv Unicode version

Theorem zdiv 9535
Description: Two ways to express " M divides  N. (Contributed by NM, 3-Oct-2008.)
Assertion
Ref Expression
zdiv  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( E. k  e.  ZZ  ( M  x.  k )  =  N  <-> 
( N  /  M
)  e.  ZZ ) )
Distinct variable groups:    k, M    k, N

Proof of Theorem zdiv
StepHypRef Expression
1 nnap0 9139 . . 3  |-  ( M  e.  NN  ->  M #  0 )
21adantr 276 . 2  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  M #  0 )
3 nncn 9118 . . 3  |-  ( M  e.  NN  ->  M  e.  CC )
4 zcn 9451 . . 3  |-  ( N  e.  ZZ  ->  N  e.  CC )
5 zcn 9451 . . . . . . . . . . 11  |-  ( k  e.  ZZ  ->  k  e.  CC )
6 divcanap3 8845 . . . . . . . . . . . . 13  |-  ( ( k  e.  CC  /\  M  e.  CC  /\  M #  0 )  ->  (
( M  x.  k
)  /  M )  =  k )
763coml 1234 . . . . . . . . . . . 12  |-  ( ( M  e.  CC  /\  M #  0  /\  k  e.  CC )  ->  (
( M  x.  k
)  /  M )  =  k )
873expa 1227 . . . . . . . . . . 11  |-  ( ( ( M  e.  CC  /\  M #  0 )  /\  k  e.  CC )  ->  ( ( M  x.  k )  /  M
)  =  k )
95, 8sylan2 286 . . . . . . . . . 10  |-  ( ( ( M  e.  CC  /\  M #  0 )  /\  k  e.  ZZ )  ->  ( ( M  x.  k )  /  M
)  =  k )
1093adantl2 1178 . . . . . . . . 9  |-  ( ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  /\  k  e.  ZZ )  ->  (
( M  x.  k
)  /  M )  =  k )
11 oveq1 6008 . . . . . . . . 9  |-  ( ( M  x.  k )  =  N  ->  (
( M  x.  k
)  /  M )  =  ( N  /  M ) )
1210, 11sylan9req 2283 . . . . . . . 8  |-  ( ( ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  /\  k  e.  ZZ )  /\  ( M  x.  k )  =  N )  ->  k  =  ( N  /  M ) )
13 simplr 528 . . . . . . . 8  |-  ( ( ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  /\  k  e.  ZZ )  /\  ( M  x.  k )  =  N )  ->  k  e.  ZZ )
1412, 13eqeltrrd 2307 . . . . . . 7  |-  ( ( ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  /\  k  e.  ZZ )  /\  ( M  x.  k )  =  N )  ->  ( N  /  M )  e.  ZZ )
1514exp31 364 . . . . . 6  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  ->  (
k  e.  ZZ  ->  ( ( M  x.  k
)  =  N  -> 
( N  /  M
)  e.  ZZ ) ) )
1615rexlimdv 2647 . . . . 5  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  ->  ( E. k  e.  ZZ  ( M  x.  k
)  =  N  -> 
( N  /  M
)  e.  ZZ ) )
17 divcanap2 8827 . . . . . . 7  |-  ( ( N  e.  CC  /\  M  e.  CC  /\  M #  0 )  ->  ( M  x.  ( N  /  M ) )  =  N )
18173com12 1231 . . . . . 6  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  ->  ( M  x.  ( N  /  M ) )  =  N )
19 oveq2 6009 . . . . . . . . 9  |-  ( k  =  ( N  /  M )  ->  ( M  x.  k )  =  ( M  x.  ( N  /  M
) ) )
2019eqeq1d 2238 . . . . . . . 8  |-  ( k  =  ( N  /  M )  ->  (
( M  x.  k
)  =  N  <->  ( M  x.  ( N  /  M
) )  =  N ) )
2120rspcev 2907 . . . . . . 7  |-  ( ( ( N  /  M
)  e.  ZZ  /\  ( M  x.  ( N  /  M ) )  =  N )  ->  E. k  e.  ZZ  ( M  x.  k
)  =  N )
2221expcom 116 . . . . . 6  |-  ( ( M  x.  ( N  /  M ) )  =  N  ->  (
( N  /  M
)  e.  ZZ  ->  E. k  e.  ZZ  ( M  x.  k )  =  N ) )
2318, 22syl 14 . . . . 5  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  ->  (
( N  /  M
)  e.  ZZ  ->  E. k  e.  ZZ  ( M  x.  k )  =  N ) )
2416, 23impbid 129 . . . 4  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  ->  ( E. k  e.  ZZ  ( M  x.  k
)  =  N  <->  ( N  /  M )  e.  ZZ ) )
25243expia 1229 . . 3  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( M #  0  -> 
( E. k  e.  ZZ  ( M  x.  k )  =  N  <-> 
( N  /  M
)  e.  ZZ ) ) )
263, 4, 25syl2an 289 . 2  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M #  0  -> 
( E. k  e.  ZZ  ( M  x.  k )  =  N  <-> 
( N  /  M
)  e.  ZZ ) ) )
272, 26mpd 13 1  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( E. k  e.  ZZ  ( M  x.  k )  =  N  <-> 
( N  /  M
)  e.  ZZ ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   E.wrex 2509   class class class wbr 4083  (class class class)co 6001   CCcc 7997   0cc0 7999    x. cmul 8004   # cap 8728    / cdiv 8819   NNcn 9110   ZZcz 9446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-z 9447
This theorem is referenced by:  addmodlteq  10620
  Copyright terms: Public domain W3C validator