ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnn0subcl Unicode version

Theorem mulgnn0subcl 13027
Description: Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mulgnnsubcl.b  |-  B  =  ( Base `  G
)
mulgnnsubcl.t  |-  .x.  =  (.g
`  G )
mulgnnsubcl.p  |-  .+  =  ( +g  `  G )
mulgnnsubcl.g  |-  ( ph  ->  G  e.  V )
mulgnnsubcl.s  |-  ( ph  ->  S  C_  B )
mulgnnsubcl.c  |-  ( (
ph  /\  x  e.  S  /\  y  e.  S
)  ->  ( x  .+  y )  e.  S
)
mulgnn0subcl.z  |-  .0.  =  ( 0g `  G )
mulgnn0subcl.c  |-  ( ph  ->  .0.  e.  S )
Assertion
Ref Expression
mulgnn0subcl  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
Distinct variable groups:    x, y,  .+    x, B, y    x, G, y    x, N, y   
x, S, y    ph, x, y    x,  .x.    x, X, y
Allowed substitution hints:    .x. ( y)    V( x, y)    .0. ( x, y)

Proof of Theorem mulgnn0subcl
StepHypRef Expression
1 mulgnnsubcl.b . . . . . 6  |-  B  =  ( Base `  G
)
2 mulgnnsubcl.t . . . . . 6  |-  .x.  =  (.g
`  G )
3 mulgnnsubcl.p . . . . . 6  |-  .+  =  ( +g  `  G )
4 mulgnnsubcl.g . . . . . 6  |-  ( ph  ->  G  e.  V )
5 mulgnnsubcl.s . . . . . 6  |-  ( ph  ->  S  C_  B )
6 mulgnnsubcl.c . . . . . 6  |-  ( (
ph  /\  x  e.  S  /\  y  e.  S
)  ->  ( x  .+  y )  e.  S
)
71, 2, 3, 4, 5, 6mulgnnsubcl 13026 . . . . 5  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
873expa 1204 . . . 4  |-  ( ( ( ph  /\  N  e.  NN )  /\  X  e.  S )  ->  ( N  .x.  X )  e.  S )
98an32s 568 . . 3  |-  ( ( ( ph  /\  X  e.  S )  /\  N  e.  NN )  ->  ( N  .x.  X )  e.  S )
1093adantl2 1155 . 2  |-  ( ( ( ph  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  ( N  .x.  X )  e.  S )
11 oveq1 5895 . . . 4  |-  ( N  =  0  ->  ( N  .x.  X )  =  ( 0  .x.  X
) )
1253ad2ant1 1019 . . . . . 6  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  S  C_  B
)
13 simp3 1000 . . . . . 6  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  X  e.  S )
1412, 13sseldd 3168 . . . . 5  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  X  e.  B )
15 mulgnn0subcl.z . . . . . 6  |-  .0.  =  ( 0g `  G )
161, 15, 2mulg0 13019 . . . . 5  |-  ( X  e.  B  ->  (
0  .x.  X )  =  .0.  )
1714, 16syl 14 . . . 4  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  ( 0 
.x.  X )  =  .0.  )
1811, 17sylan9eqr 2242 . . 3  |-  ( ( ( ph  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  -> 
( N  .x.  X
)  =  .0.  )
19 mulgnn0subcl.c . . . . 5  |-  ( ph  ->  .0.  e.  S )
20193ad2ant1 1019 . . . 4  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  .0.  e.  S )
2120adantr 276 . . 3  |-  ( ( ( ph  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  ->  .0.  e.  S )
2218, 21eqeltrd 2264 . 2  |-  ( ( ( ph  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  -> 
( N  .x.  X
)  e.  S )
23 simp2 999 . . 3  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  N  e.  NN0 )
24 elnn0 9191 . . 3  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2523, 24sylib 122 . 2  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  ( N  e.  NN  \/  N  =  0 ) )
2610, 22, 25mpjaodan 799 1  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 979    = wceq 1363    e. wcel 2158    C_ wss 3141   ` cfv 5228  (class class class)co 5888   0cc0 7824   NNcn 8932   NN0cn0 9189   Basecbs 12475   +g cplusg 12550   0gc0g 12722  .gcmg 13013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-addcom 7924  ax-addass 7926  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-0id 7932  ax-rnegex 7933  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-ltadd 7940
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-frec 6405  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-inn 8933  df-2 8991  df-n0 9190  df-z 9267  df-uz 9542  df-seqfrec 10459  df-ndx 12478  df-slot 12479  df-base 12481  df-plusg 12563  df-0g 12724  df-minusg 12902  df-mulg 13014
This theorem is referenced by:  mulgsubcl  13028  mulgnn0cl  13030  submmulgcl  13057
  Copyright terms: Public domain W3C validator