ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnn0subcl Unicode version

Theorem mulgnn0subcl 13672
Description: Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mulgnnsubcl.b  |-  B  =  ( Base `  G
)
mulgnnsubcl.t  |-  .x.  =  (.g
`  G )
mulgnnsubcl.p  |-  .+  =  ( +g  `  G )
mulgnnsubcl.g  |-  ( ph  ->  G  e.  V )
mulgnnsubcl.s  |-  ( ph  ->  S  C_  B )
mulgnnsubcl.c  |-  ( (
ph  /\  x  e.  S  /\  y  e.  S
)  ->  ( x  .+  y )  e.  S
)
mulgnn0subcl.z  |-  .0.  =  ( 0g `  G )
mulgnn0subcl.c  |-  ( ph  ->  .0.  e.  S )
Assertion
Ref Expression
mulgnn0subcl  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
Distinct variable groups:    x, y,  .+    x, B, y    x, G, y    x, N, y   
x, S, y    ph, x, y    x,  .x.    x, X, y
Allowed substitution hints:    .x. ( y)    V( x, y)    .0. ( x, y)

Proof of Theorem mulgnn0subcl
StepHypRef Expression
1 mulgnnsubcl.b . . . . . 6  |-  B  =  ( Base `  G
)
2 mulgnnsubcl.t . . . . . 6  |-  .x.  =  (.g
`  G )
3 mulgnnsubcl.p . . . . . 6  |-  .+  =  ( +g  `  G )
4 mulgnnsubcl.g . . . . . 6  |-  ( ph  ->  G  e.  V )
5 mulgnnsubcl.s . . . . . 6  |-  ( ph  ->  S  C_  B )
6 mulgnnsubcl.c . . . . . 6  |-  ( (
ph  /\  x  e.  S  /\  y  e.  S
)  ->  ( x  .+  y )  e.  S
)
71, 2, 3, 4, 5, 6mulgnnsubcl 13671 . . . . 5  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
873expa 1227 . . . 4  |-  ( ( ( ph  /\  N  e.  NN )  /\  X  e.  S )  ->  ( N  .x.  X )  e.  S )
98an32s 568 . . 3  |-  ( ( ( ph  /\  X  e.  S )  /\  N  e.  NN )  ->  ( N  .x.  X )  e.  S )
1093adantl2 1178 . 2  |-  ( ( ( ph  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  ( N  .x.  X )  e.  S )
11 oveq1 6008 . . . 4  |-  ( N  =  0  ->  ( N  .x.  X )  =  ( 0  .x.  X
) )
1253ad2ant1 1042 . . . . . 6  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  S  C_  B
)
13 simp3 1023 . . . . . 6  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  X  e.  S )
1412, 13sseldd 3225 . . . . 5  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  X  e.  B )
15 mulgnn0subcl.z . . . . . 6  |-  .0.  =  ( 0g `  G )
161, 15, 2mulg0 13662 . . . . 5  |-  ( X  e.  B  ->  (
0  .x.  X )  =  .0.  )
1714, 16syl 14 . . . 4  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  ( 0 
.x.  X )  =  .0.  )
1811, 17sylan9eqr 2284 . . 3  |-  ( ( ( ph  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  -> 
( N  .x.  X
)  =  .0.  )
19 mulgnn0subcl.c . . . . 5  |-  ( ph  ->  .0.  e.  S )
20193ad2ant1 1042 . . . 4  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  .0.  e.  S )
2120adantr 276 . . 3  |-  ( ( ( ph  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  ->  .0.  e.  S )
2218, 21eqeltrd 2306 . 2  |-  ( ( ( ph  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  -> 
( N  .x.  X
)  e.  S )
23 simp2 1022 . . 3  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  N  e.  NN0 )
24 elnn0 9371 . . 3  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2523, 24sylib 122 . 2  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  ( N  e.  NN  \/  N  =  0 ) )
2610, 22, 25mpjaodan 803 1  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200    C_ wss 3197   ` cfv 5318  (class class class)co 6001   0cc0 7999   NNcn 9110   NN0cn0 9369   Basecbs 13032   +g cplusg 13110   0gc0g 13289  .gcmg 13656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-2 9169  df-n0 9370  df-z 9447  df-uz 9723  df-seqfrec 10670  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-0g 13291  df-minusg 13537  df-mulg 13657
This theorem is referenced by:  mulgsubcl  13673  mulgnn0cl  13675  submmulgcl  13702
  Copyright terms: Public domain W3C validator