ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adantl3 Unicode version

Theorem 3adantl3 1150
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.)
Hypothesis
Ref Expression
3adantl.1  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
Assertion
Ref Expression
3adantl3  |-  ( ( ( ph  /\  ps  /\ 
ta )  /\  ch )  ->  th )

Proof of Theorem 3adantl3
StepHypRef Expression
1 3simpa 989 . 2  |-  ( (
ph  /\  ps  /\  ta )  ->  ( ph  /\  ps ) )
2 3adantl.1 . 2  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
31, 2sylan 281 1  |-  ( ( ( ph  /\  ps  /\ 
ta )  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  ltsopr  7558  lediv2a  8811  muldvds1  11778  muldvds2  11779  dvdscmul  11780  dvdsmulc  11781  rpexp  12107  iscnp4  13012  cnpnei  13013  xblm  13211
  Copyright terms: Public domain W3C validator