ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adantl3 Unicode version

Theorem 3adantl3 1122
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.)
Hypothesis
Ref Expression
3adantl.1  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
Assertion
Ref Expression
3adantl3  |-  ( ( ( ph  /\  ps  /\ 
ta )  /\  ch )  ->  th )

Proof of Theorem 3adantl3
StepHypRef Expression
1 3simpa 961 . 2  |-  ( (
ph  /\  ps  /\  ta )  ->  ( ph  /\  ps ) )
2 3adantl.1 . 2  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
31, 2sylan 279 1  |-  ( ( ( ph  /\  ps  /\ 
ta )  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 945
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 947
This theorem is referenced by:  ltsopr  7352  lediv2a  8563  muldvds1  11366  muldvds2  11367  dvdscmul  11368  dvdsmulc  11369  rpexp  11677  iscnp4  12229  cnpnei  12230  xblm  12406
  Copyright terms: Public domain W3C validator