ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltaprg Unicode version

Theorem ltaprg 7617
Description: Ordering property of addition. Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by Jim Kingdon, 26-Dec-2019.)
Assertion
Ref Expression
ltaprg  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  <P  B  <->  ( C  +P.  A )  <P  ( C  +P.  B ) ) )

Proof of Theorem ltaprg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ltaprlem 7616 . . 3  |-  ( C  e.  P.  ->  ( A  <P  B  ->  ( C  +P.  A )  <P 
( C  +P.  B
) ) )
213ad2ant3 1020 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  <P  B  ->  ( C  +P.  A )  <P 
( C  +P.  B
) ) )
3 ltexpri 7611 . . . . 5  |-  ( ( C  +P.  A ) 
<P  ( C  +P.  B
)  ->  E. x  e.  P.  ( ( C  +P.  A )  +P.  x )  =  ( C  +P.  B ) )
43adantl 277 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( C  +P.  A
)  <P  ( C  +P.  B ) )  ->  E. x  e.  P.  ( ( C  +P.  A )  +P.  x )  =  ( C  +P.  B ) )
5 simpl1 1000 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( ( C  +P.  A )  +P.  x )  =  ( C  +P.  B ) ) )  ->  A  e.  P. )
6 simprl 529 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( ( C  +P.  A )  +P.  x )  =  ( C  +P.  B ) ) )  ->  x  e.  P. )
7 ltaddpr 7595 . . . . . . 7  |-  ( ( A  e.  P.  /\  x  e.  P. )  ->  A  <P  ( A  +P.  x ) )
85, 6, 7syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( ( C  +P.  A )  +P.  x )  =  ( C  +P.  B ) ) )  ->  A  <P  ( A  +P.  x ) )
9 addassprg 7577 . . . . . . . . . . . 12  |-  ( ( C  e.  P.  /\  A  e.  P.  /\  x  e.  P. )  ->  (
( C  +P.  A
)  +P.  x )  =  ( C  +P.  ( A  +P.  x ) ) )
1093com12 1207 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  C  e.  P.  /\  x  e.  P. )  ->  (
( C  +P.  A
)  +P.  x )  =  ( C  +P.  ( A  +P.  x ) ) )
11103expa 1203 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  C  e.  P. )  /\  x  e.  P. )  ->  ( ( C  +P.  A )  +P.  x )  =  ( C  +P.  ( A  +P.  x ) ) )
1211adantrr 479 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( ( C  +P.  A )  +P.  x )  =  ( C  +P.  B ) ) )  -> 
( ( C  +P.  A )  +P.  x )  =  ( C  +P.  ( A  +P.  x ) ) )
13 simprr 531 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( ( C  +P.  A )  +P.  x )  =  ( C  +P.  B ) ) )  -> 
( ( C  +P.  A )  +P.  x )  =  ( C  +P.  B ) )
1412, 13eqtr3d 2212 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( ( C  +P.  A )  +P.  x )  =  ( C  +P.  B ) ) )  -> 
( C  +P.  ( A  +P.  x ) )  =  ( C  +P.  B ) )
15143adantl2 1154 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( ( C  +P.  A )  +P.  x )  =  ( C  +P.  B ) ) )  -> 
( C  +P.  ( A  +P.  x ) )  =  ( C  +P.  B ) )
16 simpl3 1002 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( ( C  +P.  A )  +P.  x )  =  ( C  +P.  B ) ) )  ->  C  e.  P. )
17 addclpr 7535 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  x  e.  P. )  ->  ( A  +P.  x
)  e.  P. )
185, 6, 17syl2anc 411 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( ( C  +P.  A )  +P.  x )  =  ( C  +P.  B ) ) )  -> 
( A  +P.  x
)  e.  P. )
19 simpl2 1001 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( ( C  +P.  A )  +P.  x )  =  ( C  +P.  B ) ) )  ->  B  e.  P. )
20 addcanprg 7614 . . . . . . . 8  |-  ( ( C  e.  P.  /\  ( A  +P.  x )  e.  P.  /\  B  e.  P. )  ->  (
( C  +P.  ( A  +P.  x ) )  =  ( C  +P.  B )  ->  ( A  +P.  x )  =  B ) )
2116, 18, 19, 20syl3anc 1238 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( ( C  +P.  A )  +P.  x )  =  ( C  +P.  B ) ) )  -> 
( ( C  +P.  ( A  +P.  x ) )  =  ( C  +P.  B )  -> 
( A  +P.  x
)  =  B ) )
2215, 21mpd 13 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( ( C  +P.  A )  +P.  x )  =  ( C  +P.  B ) ) )  -> 
( A  +P.  x
)  =  B )
238, 22breqtrd 4029 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( ( C  +P.  A )  +P.  x )  =  ( C  +P.  B ) ) )  ->  A  <P  B )
2423adantlr 477 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( C  +P.  A )  <P  ( C  +P.  B ) )  /\  ( x  e.  P.  /\  ( ( C  +P.  A )  +P.  x )  =  ( C  +P.  B ) ) )  ->  A  <P  B )
254, 24rexlimddv 2599 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( C  +P.  A
)  <P  ( C  +P.  B ) )  ->  A  <P  B )
2625ex 115 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( C  +P.  A
)  <P  ( C  +P.  B )  ->  A  <P  B ) )
272, 26impbid 129 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  <P  B  <->  ( C  +P.  A )  <P  ( C  +P.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   E.wrex 2456   class class class wbr 4003  (class class class)co 5874   P.cnp 7289    +P. cpp 7291    <P cltp 7293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-eprel 4289  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-irdg 6370  df-1o 6416  df-2o 6417  df-oadd 6420  df-omul 6421  df-er 6534  df-ec 6536  df-qs 6540  df-ni 7302  df-pli 7303  df-mi 7304  df-lti 7305  df-plpq 7342  df-mpq 7343  df-enq 7345  df-nqqs 7346  df-plqqs 7347  df-mqqs 7348  df-1nqqs 7349  df-rq 7350  df-ltnqqs 7351  df-enq0 7422  df-nq0 7423  df-0nq0 7424  df-plq0 7425  df-mq0 7426  df-inp 7464  df-iplp 7466  df-iltp 7468
This theorem is referenced by:  prplnqu  7618  addextpr  7619  caucvgprlemcanl  7642  caucvgprprlemnkltj  7687  caucvgprprlemnbj  7691  caucvgprprlemmu  7693  caucvgprprlemloc  7701  caucvgprprlemexbt  7704  caucvgprprlemexb  7705  caucvgprprlemaddq  7706  caucvgprprlem1  7707  caucvgprprlem2  7708  ltsrprg  7745  gt0srpr  7746  lttrsr  7760  ltsosr  7762  ltasrg  7768  prsrlt  7785  ltpsrprg  7801  map2psrprg  7803
  Copyright terms: Public domain W3C validator