ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgsubcl Unicode version

Theorem mulgsubcl 13668
Description: Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mulgnnsubcl.b  |-  B  =  ( Base `  G
)
mulgnnsubcl.t  |-  .x.  =  (.g
`  G )
mulgnnsubcl.p  |-  .+  =  ( +g  `  G )
mulgnnsubcl.g  |-  ( ph  ->  G  e.  V )
mulgnnsubcl.s  |-  ( ph  ->  S  C_  B )
mulgnnsubcl.c  |-  ( (
ph  /\  x  e.  S  /\  y  e.  S
)  ->  ( x  .+  y )  e.  S
)
mulgnn0subcl.z  |-  .0.  =  ( 0g `  G )
mulgnn0subcl.c  |-  ( ph  ->  .0.  e.  S )
mulgsubcl.i  |-  I  =  ( invg `  G )
mulgsubcl.c  |-  ( (
ph  /\  x  e.  S )  ->  (
I `  x )  e.  S )
Assertion
Ref Expression
mulgsubcl  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
Distinct variable groups:    x, y,  .+    x, B, y    x, G, y    x, I    x, N, y    x, S, y    ph, x, y    x,  .x.    x, X, y
Allowed substitution hints:    .x. ( y)    I( y)    V( x, y)    .0. ( x, y)

Proof of Theorem mulgsubcl
StepHypRef Expression
1 mulgnnsubcl.b . . . . . 6  |-  B  =  ( Base `  G
)
2 mulgnnsubcl.t . . . . . 6  |-  .x.  =  (.g
`  G )
3 mulgnnsubcl.p . . . . . 6  |-  .+  =  ( +g  `  G )
4 mulgnnsubcl.g . . . . . 6  |-  ( ph  ->  G  e.  V )
5 mulgnnsubcl.s . . . . . 6  |-  ( ph  ->  S  C_  B )
6 mulgnnsubcl.c . . . . . 6  |-  ( (
ph  /\  x  e.  S  /\  y  e.  S
)  ->  ( x  .+  y )  e.  S
)
7 mulgnn0subcl.z . . . . . 6  |-  .0.  =  ( 0g `  G )
8 mulgnn0subcl.c . . . . . 6  |-  ( ph  ->  .0.  e.  S )
91, 2, 3, 4, 5, 6, 7, 8mulgnn0subcl 13667 . . . . 5  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
1093expa 1227 . . . 4  |-  ( ( ( ph  /\  N  e.  NN0 )  /\  X  e.  S )  ->  ( N  .x.  X )  e.  S )
1110an32s 568 . . 3  |-  ( ( ( ph  /\  X  e.  S )  /\  N  e.  NN0 )  ->  ( N  .x.  X )  e.  S )
12113adantl2 1178 . 2  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  e.  NN0 )  ->  ( N  .x.  X )  e.  S )
13 simp2 1022 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  N  e.  ZZ )
1413adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  N  e.  ZZ )
1514zcnd 9566 . . . . . . 7  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  N  e.  CC )
1615negnegd 8444 . . . . . 6  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  -u -u N  =  N )
1716oveq1d 6015 . . . . 5  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  ( -u -u N  .x.  X )  =  ( N  .x.  X ) )
18 id 19 . . . . . 6  |-  ( -u N  e.  NN  ->  -u N  e.  NN )
1953ad2ant1 1042 . . . . . . 7  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  S  C_  B
)
20 simp3 1023 . . . . . . 7  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  X  e.  S )
2119, 20sseldd 3225 . . . . . 6  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  X  e.  B )
22 mulgsubcl.i . . . . . . 7  |-  I  =  ( invg `  G )
231, 2, 22mulgnegnn 13664 . . . . . 6  |-  ( (
-u N  e.  NN  /\  X  e.  B )  ->  ( -u -u N  .x.  X )  =  ( I `  ( -u N  .x.  X ) ) )
2418, 21, 23syl2anr 290 . . . . 5  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  ( -u -u N  .x.  X )  =  ( I `  ( -u N  .x.  X
) ) )
2517, 24eqtr3d 2264 . . . 4  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  ( N  .x.  X )  =  ( I `  ( -u N  .x.  X ) ) )
26 fveq2 5626 . . . . . 6  |-  ( x  =  ( -u N  .x.  X )  ->  (
I `  x )  =  ( I `  ( -u N  .x.  X
) ) )
2726eleq1d 2298 . . . . 5  |-  ( x  =  ( -u N  .x.  X )  ->  (
( I `  x
)  e.  S  <->  ( I `  ( -u N  .x.  X ) )  e.  S ) )
28 mulgsubcl.c . . . . . . . 8  |-  ( (
ph  /\  x  e.  S )  ->  (
I `  x )  e.  S )
2928ralrimiva 2603 . . . . . . 7  |-  ( ph  ->  A. x  e.  S  ( I `  x
)  e.  S )
30293ad2ant1 1042 . . . . . 6  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  A. x  e.  S  ( I `  x )  e.  S
)
3130adantr 276 . . . . 5  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  A. x  e.  S  ( I `  x )  e.  S
)
321, 2, 3, 4, 5, 6mulgnnsubcl 13666 . . . . . . . 8  |-  ( (
ph  /\  -u N  e.  NN  /\  X  e.  S )  ->  ( -u N  .x.  X )  e.  S )
33323expa 1227 . . . . . . 7  |-  ( ( ( ph  /\  -u N  e.  NN )  /\  X  e.  S )  ->  ( -u N  .x.  X )  e.  S )
3433an32s 568 . . . . . 6  |-  ( ( ( ph  /\  X  e.  S )  /\  -u N  e.  NN )  ->  ( -u N  .x.  X )  e.  S )
35343adantl2 1178 . . . . 5  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  ( -u N  .x.  X )  e.  S )
3627, 31, 35rspcdva 2912 . . . 4  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  (
I `  ( -u N  .x.  X ) )  e.  S )
3725, 36eqeltrd 2306 . . 3  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  ( N  .x.  X )  e.  S )
3837adantrl 478 . 2  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( N  .x.  X
)  e.  S )
39 elznn0nn 9456 . . 3  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
4013, 39sylib 122 . 2  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
4112, 38, 40mpjaodan 803 1  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508    C_ wss 3197   ` cfv 5317  (class class class)co 6000   RRcr 7994   -ucneg 8314   NNcn 9106   NN0cn0 9365   ZZcz 9442   Basecbs 13027   +g cplusg 13105   0gc0g 13284   invgcminusg 13529  .gcmg 13651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719  df-seqfrec 10665  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-0g 13286  df-minusg 13532  df-mulg 13652
This theorem is referenced by:  mulgcl  13671  subgmulgcl  13719
  Copyright terms: Public domain W3C validator