ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgsubcl Unicode version

Theorem mulgsubcl 13342
Description: Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mulgnnsubcl.b  |-  B  =  ( Base `  G
)
mulgnnsubcl.t  |-  .x.  =  (.g
`  G )
mulgnnsubcl.p  |-  .+  =  ( +g  `  G )
mulgnnsubcl.g  |-  ( ph  ->  G  e.  V )
mulgnnsubcl.s  |-  ( ph  ->  S  C_  B )
mulgnnsubcl.c  |-  ( (
ph  /\  x  e.  S  /\  y  e.  S
)  ->  ( x  .+  y )  e.  S
)
mulgnn0subcl.z  |-  .0.  =  ( 0g `  G )
mulgnn0subcl.c  |-  ( ph  ->  .0.  e.  S )
mulgsubcl.i  |-  I  =  ( invg `  G )
mulgsubcl.c  |-  ( (
ph  /\  x  e.  S )  ->  (
I `  x )  e.  S )
Assertion
Ref Expression
mulgsubcl  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
Distinct variable groups:    x, y,  .+    x, B, y    x, G, y    x, I    x, N, y    x, S, y    ph, x, y    x,  .x.    x, X, y
Allowed substitution hints:    .x. ( y)    I( y)    V( x, y)    .0. ( x, y)

Proof of Theorem mulgsubcl
StepHypRef Expression
1 mulgnnsubcl.b . . . . . 6  |-  B  =  ( Base `  G
)
2 mulgnnsubcl.t . . . . . 6  |-  .x.  =  (.g
`  G )
3 mulgnnsubcl.p . . . . . 6  |-  .+  =  ( +g  `  G )
4 mulgnnsubcl.g . . . . . 6  |-  ( ph  ->  G  e.  V )
5 mulgnnsubcl.s . . . . . 6  |-  ( ph  ->  S  C_  B )
6 mulgnnsubcl.c . . . . . 6  |-  ( (
ph  /\  x  e.  S  /\  y  e.  S
)  ->  ( x  .+  y )  e.  S
)
7 mulgnn0subcl.z . . . . . 6  |-  .0.  =  ( 0g `  G )
8 mulgnn0subcl.c . . . . . 6  |-  ( ph  ->  .0.  e.  S )
91, 2, 3, 4, 5, 6, 7, 8mulgnn0subcl 13341 . . . . 5  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
1093expa 1205 . . . 4  |-  ( ( ( ph  /\  N  e.  NN0 )  /\  X  e.  S )  ->  ( N  .x.  X )  e.  S )
1110an32s 568 . . 3  |-  ( ( ( ph  /\  X  e.  S )  /\  N  e.  NN0 )  ->  ( N  .x.  X )  e.  S )
12113adantl2 1156 . 2  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  e.  NN0 )  ->  ( N  .x.  X )  e.  S )
13 simp2 1000 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  N  e.  ZZ )
1413adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  N  e.  ZZ )
1514zcnd 9466 . . . . . . 7  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  N  e.  CC )
1615negnegd 8345 . . . . . 6  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  -u -u N  =  N )
1716oveq1d 5940 . . . . 5  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  ( -u -u N  .x.  X )  =  ( N  .x.  X ) )
18 id 19 . . . . . 6  |-  ( -u N  e.  NN  ->  -u N  e.  NN )
1953ad2ant1 1020 . . . . . . 7  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  S  C_  B
)
20 simp3 1001 . . . . . . 7  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  X  e.  S )
2119, 20sseldd 3185 . . . . . 6  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  X  e.  B )
22 mulgsubcl.i . . . . . . 7  |-  I  =  ( invg `  G )
231, 2, 22mulgnegnn 13338 . . . . . 6  |-  ( (
-u N  e.  NN  /\  X  e.  B )  ->  ( -u -u N  .x.  X )  =  ( I `  ( -u N  .x.  X ) ) )
2418, 21, 23syl2anr 290 . . . . 5  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  ( -u -u N  .x.  X )  =  ( I `  ( -u N  .x.  X
) ) )
2517, 24eqtr3d 2231 . . . 4  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  ( N  .x.  X )  =  ( I `  ( -u N  .x.  X ) ) )
26 fveq2 5561 . . . . . 6  |-  ( x  =  ( -u N  .x.  X )  ->  (
I `  x )  =  ( I `  ( -u N  .x.  X
) ) )
2726eleq1d 2265 . . . . 5  |-  ( x  =  ( -u N  .x.  X )  ->  (
( I `  x
)  e.  S  <->  ( I `  ( -u N  .x.  X ) )  e.  S ) )
28 mulgsubcl.c . . . . . . . 8  |-  ( (
ph  /\  x  e.  S )  ->  (
I `  x )  e.  S )
2928ralrimiva 2570 . . . . . . 7  |-  ( ph  ->  A. x  e.  S  ( I `  x
)  e.  S )
30293ad2ant1 1020 . . . . . 6  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  A. x  e.  S  ( I `  x )  e.  S
)
3130adantr 276 . . . . 5  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  A. x  e.  S  ( I `  x )  e.  S
)
321, 2, 3, 4, 5, 6mulgnnsubcl 13340 . . . . . . . 8  |-  ( (
ph  /\  -u N  e.  NN  /\  X  e.  S )  ->  ( -u N  .x.  X )  e.  S )
33323expa 1205 . . . . . . 7  |-  ( ( ( ph  /\  -u N  e.  NN )  /\  X  e.  S )  ->  ( -u N  .x.  X )  e.  S )
3433an32s 568 . . . . . 6  |-  ( ( ( ph  /\  X  e.  S )  /\  -u N  e.  NN )  ->  ( -u N  .x.  X )  e.  S )
35343adantl2 1156 . . . . 5  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  ( -u N  .x.  X )  e.  S )
3627, 31, 35rspcdva 2873 . . . 4  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  (
I `  ( -u N  .x.  X ) )  e.  S )
3725, 36eqeltrd 2273 . . 3  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  ( N  .x.  X )  e.  S )
3837adantrl 478 . 2  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( N  .x.  X
)  e.  S )
39 elznn0nn 9357 . . 3  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
4013, 39sylib 122 . 2  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
4112, 38, 40mpjaodan 799 1  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475    C_ wss 3157   ` cfv 5259  (class class class)co 5925   RRcr 7895   -ucneg 8215   NNcn 9007   NN0cn0 9266   ZZcz 9343   Basecbs 12703   +g cplusg 12780   0gc0g 12958   invgcminusg 13203  .gcmg 13325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619  df-seqfrec 10557  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-0g 12960  df-minusg 13206  df-mulg 13326
This theorem is referenced by:  mulgcl  13345  subgmulgcl  13393
  Copyright terms: Public domain W3C validator