ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgsubcl Unicode version

Theorem mulgsubcl 13002
Description: Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mulgnnsubcl.b  |-  B  =  ( Base `  G
)
mulgnnsubcl.t  |-  .x.  =  (.g
`  G )
mulgnnsubcl.p  |-  .+  =  ( +g  `  G )
mulgnnsubcl.g  |-  ( ph  ->  G  e.  V )
mulgnnsubcl.s  |-  ( ph  ->  S  C_  B )
mulgnnsubcl.c  |-  ( (
ph  /\  x  e.  S  /\  y  e.  S
)  ->  ( x  .+  y )  e.  S
)
mulgnn0subcl.z  |-  .0.  =  ( 0g `  G )
mulgnn0subcl.c  |-  ( ph  ->  .0.  e.  S )
mulgsubcl.i  |-  I  =  ( invg `  G )
mulgsubcl.c  |-  ( (
ph  /\  x  e.  S )  ->  (
I `  x )  e.  S )
Assertion
Ref Expression
mulgsubcl  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
Distinct variable groups:    x, y,  .+    x, B, y    x, G, y    x, I    x, N, y    x, S, y    ph, x, y    x,  .x.    x, X, y
Allowed substitution hints:    .x. ( y)    I( y)    V( x, y)    .0. ( x, y)

Proof of Theorem mulgsubcl
StepHypRef Expression
1 mulgnnsubcl.b . . . . . 6  |-  B  =  ( Base `  G
)
2 mulgnnsubcl.t . . . . . 6  |-  .x.  =  (.g
`  G )
3 mulgnnsubcl.p . . . . . 6  |-  .+  =  ( +g  `  G )
4 mulgnnsubcl.g . . . . . 6  |-  ( ph  ->  G  e.  V )
5 mulgnnsubcl.s . . . . . 6  |-  ( ph  ->  S  C_  B )
6 mulgnnsubcl.c . . . . . 6  |-  ( (
ph  /\  x  e.  S  /\  y  e.  S
)  ->  ( x  .+  y )  e.  S
)
7 mulgnn0subcl.z . . . . . 6  |-  .0.  =  ( 0g `  G )
8 mulgnn0subcl.c . . . . . 6  |-  ( ph  ->  .0.  e.  S )
91, 2, 3, 4, 5, 6, 7, 8mulgnn0subcl 13001 . . . . 5  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
1093expa 1203 . . . 4  |-  ( ( ( ph  /\  N  e.  NN0 )  /\  X  e.  S )  ->  ( N  .x.  X )  e.  S )
1110an32s 568 . . 3  |-  ( ( ( ph  /\  X  e.  S )  /\  N  e.  NN0 )  ->  ( N  .x.  X )  e.  S )
12113adantl2 1154 . 2  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  e.  NN0 )  ->  ( N  .x.  X )  e.  S )
13 simp2 998 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  N  e.  ZZ )
1413adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  N  e.  ZZ )
1514zcnd 9378 . . . . . . 7  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  N  e.  CC )
1615negnegd 8261 . . . . . 6  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  -u -u N  =  N )
1716oveq1d 5892 . . . . 5  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  ( -u -u N  .x.  X )  =  ( N  .x.  X ) )
18 id 19 . . . . . 6  |-  ( -u N  e.  NN  ->  -u N  e.  NN )
1953ad2ant1 1018 . . . . . . 7  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  S  C_  B
)
20 simp3 999 . . . . . . 7  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  X  e.  S )
2119, 20sseldd 3158 . . . . . 6  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  X  e.  B )
22 mulgsubcl.i . . . . . . 7  |-  I  =  ( invg `  G )
231, 2, 22mulgnegnn 12998 . . . . . 6  |-  ( (
-u N  e.  NN  /\  X  e.  B )  ->  ( -u -u N  .x.  X )  =  ( I `  ( -u N  .x.  X ) ) )
2418, 21, 23syl2anr 290 . . . . 5  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  ( -u -u N  .x.  X )  =  ( I `  ( -u N  .x.  X
) ) )
2517, 24eqtr3d 2212 . . . 4  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  ( N  .x.  X )  =  ( I `  ( -u N  .x.  X ) ) )
26 fveq2 5517 . . . . . 6  |-  ( x  =  ( -u N  .x.  X )  ->  (
I `  x )  =  ( I `  ( -u N  .x.  X
) ) )
2726eleq1d 2246 . . . . 5  |-  ( x  =  ( -u N  .x.  X )  ->  (
( I `  x
)  e.  S  <->  ( I `  ( -u N  .x.  X ) )  e.  S ) )
28 mulgsubcl.c . . . . . . . 8  |-  ( (
ph  /\  x  e.  S )  ->  (
I `  x )  e.  S )
2928ralrimiva 2550 . . . . . . 7  |-  ( ph  ->  A. x  e.  S  ( I `  x
)  e.  S )
30293ad2ant1 1018 . . . . . 6  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  A. x  e.  S  ( I `  x )  e.  S
)
3130adantr 276 . . . . 5  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  A. x  e.  S  ( I `  x )  e.  S
)
321, 2, 3, 4, 5, 6mulgnnsubcl 13000 . . . . . . . 8  |-  ( (
ph  /\  -u N  e.  NN  /\  X  e.  S )  ->  ( -u N  .x.  X )  e.  S )
33323expa 1203 . . . . . . 7  |-  ( ( ( ph  /\  -u N  e.  NN )  /\  X  e.  S )  ->  ( -u N  .x.  X )  e.  S )
3433an32s 568 . . . . . 6  |-  ( ( ( ph  /\  X  e.  S )  /\  -u N  e.  NN )  ->  ( -u N  .x.  X )  e.  S )
35343adantl2 1154 . . . . 5  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  ( -u N  .x.  X )  e.  S )
3627, 31, 35rspcdva 2848 . . . 4  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  (
I `  ( -u N  .x.  X ) )  e.  S )
3725, 36eqeltrd 2254 . . 3  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  ( N  .x.  X )  e.  S )
3837adantrl 478 . 2  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( N  .x.  X
)  e.  S )
39 elznn0nn 9269 . . 3  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
4013, 39sylib 122 . 2  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
4112, 38, 40mpjaodan 798 1  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455    C_ wss 3131   ` cfv 5218  (class class class)co 5877   RRcr 7812   -ucneg 8131   NNcn 8921   NN0cn0 9178   ZZcz 9255   Basecbs 12464   +g cplusg 12538   0gc0g 12710   invgcminusg 12883  .gcmg 12988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-2 8980  df-n0 9179  df-z 9256  df-uz 9531  df-seqfrec 10448  df-ndx 12467  df-slot 12468  df-base 12470  df-plusg 12551  df-0g 12712  df-minusg 12886  df-mulg 12989
This theorem is referenced by:  mulgcl  13005  subgmulgcl  13052
  Copyright terms: Public domain W3C validator