ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgsubcl Unicode version

Theorem mulgsubcl 13206
Description: Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mulgnnsubcl.b  |-  B  =  ( Base `  G
)
mulgnnsubcl.t  |-  .x.  =  (.g
`  G )
mulgnnsubcl.p  |-  .+  =  ( +g  `  G )
mulgnnsubcl.g  |-  ( ph  ->  G  e.  V )
mulgnnsubcl.s  |-  ( ph  ->  S  C_  B )
mulgnnsubcl.c  |-  ( (
ph  /\  x  e.  S  /\  y  e.  S
)  ->  ( x  .+  y )  e.  S
)
mulgnn0subcl.z  |-  .0.  =  ( 0g `  G )
mulgnn0subcl.c  |-  ( ph  ->  .0.  e.  S )
mulgsubcl.i  |-  I  =  ( invg `  G )
mulgsubcl.c  |-  ( (
ph  /\  x  e.  S )  ->  (
I `  x )  e.  S )
Assertion
Ref Expression
mulgsubcl  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
Distinct variable groups:    x, y,  .+    x, B, y    x, G, y    x, I    x, N, y    x, S, y    ph, x, y    x,  .x.    x, X, y
Allowed substitution hints:    .x. ( y)    I( y)    V( x, y)    .0. ( x, y)

Proof of Theorem mulgsubcl
StepHypRef Expression
1 mulgnnsubcl.b . . . . . 6  |-  B  =  ( Base `  G
)
2 mulgnnsubcl.t . . . . . 6  |-  .x.  =  (.g
`  G )
3 mulgnnsubcl.p . . . . . 6  |-  .+  =  ( +g  `  G )
4 mulgnnsubcl.g . . . . . 6  |-  ( ph  ->  G  e.  V )
5 mulgnnsubcl.s . . . . . 6  |-  ( ph  ->  S  C_  B )
6 mulgnnsubcl.c . . . . . 6  |-  ( (
ph  /\  x  e.  S  /\  y  e.  S
)  ->  ( x  .+  y )  e.  S
)
7 mulgnn0subcl.z . . . . . 6  |-  .0.  =  ( 0g `  G )
8 mulgnn0subcl.c . . . . . 6  |-  ( ph  ->  .0.  e.  S )
91, 2, 3, 4, 5, 6, 7, 8mulgnn0subcl 13205 . . . . 5  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
1093expa 1205 . . . 4  |-  ( ( ( ph  /\  N  e.  NN0 )  /\  X  e.  S )  ->  ( N  .x.  X )  e.  S )
1110an32s 568 . . 3  |-  ( ( ( ph  /\  X  e.  S )  /\  N  e.  NN0 )  ->  ( N  .x.  X )  e.  S )
12113adantl2 1156 . 2  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  N  e.  NN0 )  ->  ( N  .x.  X )  e.  S )
13 simp2 1000 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  N  e.  ZZ )
1413adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  N  e.  ZZ )
1514zcnd 9440 . . . . . . 7  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  N  e.  CC )
1615negnegd 8321 . . . . . 6  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  -u -u N  =  N )
1716oveq1d 5933 . . . . 5  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  ( -u -u N  .x.  X )  =  ( N  .x.  X ) )
18 id 19 . . . . . 6  |-  ( -u N  e.  NN  ->  -u N  e.  NN )
1953ad2ant1 1020 . . . . . . 7  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  S  C_  B
)
20 simp3 1001 . . . . . . 7  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  X  e.  S )
2119, 20sseldd 3180 . . . . . 6  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  X  e.  B )
22 mulgsubcl.i . . . . . . 7  |-  I  =  ( invg `  G )
231, 2, 22mulgnegnn 13202 . . . . . 6  |-  ( (
-u N  e.  NN  /\  X  e.  B )  ->  ( -u -u N  .x.  X )  =  ( I `  ( -u N  .x.  X ) ) )
2418, 21, 23syl2anr 290 . . . . 5  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  ( -u -u N  .x.  X )  =  ( I `  ( -u N  .x.  X
) ) )
2517, 24eqtr3d 2228 . . . 4  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  ( N  .x.  X )  =  ( I `  ( -u N  .x.  X ) ) )
26 fveq2 5554 . . . . . 6  |-  ( x  =  ( -u N  .x.  X )  ->  (
I `  x )  =  ( I `  ( -u N  .x.  X
) ) )
2726eleq1d 2262 . . . . 5  |-  ( x  =  ( -u N  .x.  X )  ->  (
( I `  x
)  e.  S  <->  ( I `  ( -u N  .x.  X ) )  e.  S ) )
28 mulgsubcl.c . . . . . . . 8  |-  ( (
ph  /\  x  e.  S )  ->  (
I `  x )  e.  S )
2928ralrimiva 2567 . . . . . . 7  |-  ( ph  ->  A. x  e.  S  ( I `  x
)  e.  S )
30293ad2ant1 1020 . . . . . 6  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  A. x  e.  S  ( I `  x )  e.  S
)
3130adantr 276 . . . . 5  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  A. x  e.  S  ( I `  x )  e.  S
)
321, 2, 3, 4, 5, 6mulgnnsubcl 13204 . . . . . . . 8  |-  ( (
ph  /\  -u N  e.  NN  /\  X  e.  S )  ->  ( -u N  .x.  X )  e.  S )
33323expa 1205 . . . . . . 7  |-  ( ( ( ph  /\  -u N  e.  NN )  /\  X  e.  S )  ->  ( -u N  .x.  X )  e.  S )
3433an32s 568 . . . . . 6  |-  ( ( ( ph  /\  X  e.  S )  /\  -u N  e.  NN )  ->  ( -u N  .x.  X )  e.  S )
35343adantl2 1156 . . . . 5  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  ( -u N  .x.  X )  e.  S )
3627, 31, 35rspcdva 2869 . . . 4  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  (
I `  ( -u N  .x.  X ) )  e.  S )
3725, 36eqeltrd 2270 . . 3  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  -u N  e.  NN )  ->  ( N  .x.  X )  e.  S )
3837adantrl 478 . 2  |-  ( ( ( ph  /\  N  e.  ZZ  /\  X  e.  S )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( N  .x.  X
)  e.  S )
39 elznn0nn 9331 . . 3  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
4013, 39sylib 122 . 2  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
4112, 38, 40mpjaodan 799 1  |-  ( (
ph  /\  N  e.  ZZ  /\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472    C_ wss 3153   ` cfv 5254  (class class class)co 5918   RRcr 7871   -ucneg 8191   NNcn 8982   NN0cn0 9240   ZZcz 9317   Basecbs 12618   +g cplusg 12695   0gc0g 12867   invgcminusg 13073  .gcmg 13189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-minusg 13076  df-mulg 13190
This theorem is referenced by:  mulgcl  13209  subgmulgcl  13257
  Copyright terms: Public domain W3C validator