ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xblm Unicode version

Theorem xblm 13211
Description: A ball is inhabited iff the radius is positive. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
xblm  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( E. x  x  e.  ( P (
ball `  D ) R )  <->  0  <  R ) )
Distinct variable groups:    x, D    x, R    x, P    x, X

Proof of Theorem xblm
StepHypRef Expression
1 elbl 13185 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  D
) R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
2 xmetge0 13159 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  x  e.  X
)  ->  0  <_  ( P D x ) )
323expa 1198 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  x  e.  X )  ->  0  <_  ( P D x ) )
433adantl3 1150 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  x  e.  X
)  ->  0  <_  ( P D x ) )
5 0xr 7966 . . . . . . 7  |-  0  e.  RR*
6 xmetcl 13146 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  x  e.  X
)  ->  ( P D x )  e. 
RR* )
763expa 1198 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  x  e.  X )  ->  ( P D x )  e. 
RR* )
873adantl3 1150 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  x  e.  X
)  ->  ( P D x )  e. 
RR* )
9 simpl3 997 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  x  e.  X
)  ->  R  e.  RR* )
10 xrlelttr 9763 . . . . . . 7  |-  ( ( 0  e.  RR*  /\  ( P D x )  e. 
RR*  /\  R  e.  RR* )  ->  ( (
0  <_  ( P D x )  /\  ( P D x )  <  R )  -> 
0  <  R )
)
115, 8, 9, 10mp3an2i 1337 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  x  e.  X
)  ->  ( (
0  <_  ( P D x )  /\  ( P D x )  <  R )  -> 
0  <  R )
)
124, 11mpand 427 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  x  e.  X
)  ->  ( ( P D x )  < 
R  ->  0  <  R ) )
1312expimpd 361 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( ( x  e.  X  /\  ( P D x )  < 
R )  ->  0  <  R ) )
141, 13sylbid 149 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  D
) R )  -> 
0  <  R )
)
1514exlimdv 1812 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( E. x  x  e.  ( P (
ball `  D ) R )  ->  0  <  R ) )
16 simpl2 996 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  0  <  R
)  ->  P  e.  X )
17 simpl1 995 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  0  <  R
)  ->  D  e.  ( *Met `  X
) )
18 simpl3 997 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  0  <  R
)  ->  R  e.  RR* )
19 simpr 109 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  0  <  R
)  ->  0  <  R )
20 xblcntr 13208 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  ( R  e.  RR*  /\  0  <  R ) )  ->  P  e.  ( P ( ball `  D
) R ) )
2117, 16, 18, 19, 20syl112anc 1237 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  0  <  R
)  ->  P  e.  ( P ( ball `  D
) R ) )
22 eleq1 2233 . . . . 5  |-  ( x  =  P  ->  (
x  e.  ( P ( ball `  D
) R )  <->  P  e.  ( P ( ball `  D
) R ) ) )
2322spcegv 2818 . . . 4  |-  ( P  e.  X  ->  ( P  e.  ( P
( ball `  D ) R )  ->  E. x  x  e.  ( P
( ball `  D ) R ) ) )
2416, 21, 23sylc 62 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  0  <  R
)  ->  E. x  x  e.  ( P
( ball `  D ) R ) )
2524ex 114 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( 0  <  R  ->  E. x  x  e.  ( P ( ball `  D ) R ) ) )
2615, 25impbid 128 1  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( E. x  x  e.  ( P (
ball `  D ) R )  <->  0  <  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973   E.wex 1485    e. wcel 2141   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   0cc0 7774   RR*cxr 7953    < clt 7954    <_ cle 7955   *Metcxmet 12774   ballcbl 12776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890  ax-pre-mulgt0 7891
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-2 8937  df-xadd 9730  df-psmet 12781  df-xmet 12782  df-bl 12784
This theorem is referenced by:  blssioo  13339
  Copyright terms: Public domain W3C validator