ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xblm Unicode version

Theorem xblm 15091
Description: A ball is inhabited iff the radius is positive. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
xblm  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( E. x  x  e.  ( P (
ball `  D ) R )  <->  0  <  R ) )
Distinct variable groups:    x, D    x, R    x, P    x, X

Proof of Theorem xblm
StepHypRef Expression
1 elbl 15065 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  D
) R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
2 xmetge0 15039 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  x  e.  X
)  ->  0  <_  ( P D x ) )
323expa 1227 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  x  e.  X )  ->  0  <_  ( P D x ) )
433adantl3 1179 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  x  e.  X
)  ->  0  <_  ( P D x ) )
5 0xr 8193 . . . . . . 7  |-  0  e.  RR*
6 xmetcl 15026 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  x  e.  X
)  ->  ( P D x )  e. 
RR* )
763expa 1227 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  x  e.  X )  ->  ( P D x )  e. 
RR* )
873adantl3 1179 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  x  e.  X
)  ->  ( P D x )  e. 
RR* )
9 simpl3 1026 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  x  e.  X
)  ->  R  e.  RR* )
10 xrlelttr 10002 . . . . . . 7  |-  ( ( 0  e.  RR*  /\  ( P D x )  e. 
RR*  /\  R  e.  RR* )  ->  ( (
0  <_  ( P D x )  /\  ( P D x )  <  R )  -> 
0  <  R )
)
115, 8, 9, 10mp3an2i 1376 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  x  e.  X
)  ->  ( (
0  <_  ( P D x )  /\  ( P D x )  <  R )  -> 
0  <  R )
)
124, 11mpand 429 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  x  e.  X
)  ->  ( ( P D x )  < 
R  ->  0  <  R ) )
1312expimpd 363 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( ( x  e.  X  /\  ( P D x )  < 
R )  ->  0  <  R ) )
141, 13sylbid 150 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  D
) R )  -> 
0  <  R )
)
1514exlimdv 1865 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( E. x  x  e.  ( P (
ball `  D ) R )  ->  0  <  R ) )
16 simpl2 1025 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  0  <  R
)  ->  P  e.  X )
17 simpl1 1024 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  0  <  R
)  ->  D  e.  ( *Met `  X
) )
18 simpl3 1026 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  0  <  R
)  ->  R  e.  RR* )
19 simpr 110 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  0  <  R
)  ->  0  <  R )
20 xblcntr 15088 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  ( R  e.  RR*  /\  0  <  R ) )  ->  P  e.  ( P ( ball `  D
) R ) )
2117, 16, 18, 19, 20syl112anc 1275 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  0  <  R
)  ->  P  e.  ( P ( ball `  D
) R ) )
22 eleq1 2292 . . . . 5  |-  ( x  =  P  ->  (
x  e.  ( P ( ball `  D
) R )  <->  P  e.  ( P ( ball `  D
) R ) ) )
2322spcegv 2891 . . . 4  |-  ( P  e.  X  ->  ( P  e.  ( P
( ball `  D ) R )  ->  E. x  x  e.  ( P
( ball `  D ) R ) ) )
2416, 21, 23sylc 62 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  0  <  R
)  ->  E. x  x  e.  ( P
( ball `  D ) R ) )
2524ex 115 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( 0  <  R  ->  E. x  x  e.  ( P ( ball `  D ) R ) ) )
2615, 25impbid 129 1  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( E. x  x  e.  ( P (
ball `  D ) R )  <->  0  <  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002   E.wex 1538    e. wcel 2200   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   0cc0 7999   RR*cxr 8180    < clt 8181    <_ cle 8182   *Metcxmet 14500   ballcbl 14502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115  ax-pre-mulgt0 8116
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-2 9169  df-xadd 9969  df-psmet 14507  df-xmet 14508  df-bl 14510
This theorem is referenced by:  blssioo  15227
  Copyright terms: Public domain W3C validator