ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muldvds1 Unicode version

Theorem muldvds1 11836
Description: If a product divides an integer, so does one of its factors. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
muldvds1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  ||  N  ->  K 
||  N ) )

Proof of Theorem muldvds1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 zmulcl 9319 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( K  x.  M
)  e.  ZZ )
21anim1i 340 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ )  /\  N  e.  ZZ )  ->  ( ( K  x.  M )  e.  ZZ  /\  N  e.  ZZ ) )
323impa 1195 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  e.  ZZ  /\  N  e.  ZZ )
)
4 3simpb 996 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ZZ  /\  N  e.  ZZ ) )
5 zmulcl 9319 . . . 4  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ )  ->  ( x  x.  M
)  e.  ZZ )
65ancoms 268 . . 3  |-  ( ( M  e.  ZZ  /\  x  e.  ZZ )  ->  ( x  x.  M
)  e.  ZZ )
763ad2antl2 1161 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( x  x.  M )  e.  ZZ )
8 zcn 9271 . . . . . . . 8  |-  ( x  e.  ZZ  ->  x  e.  CC )
9 zcn 9271 . . . . . . . 8  |-  ( K  e.  ZZ  ->  K  e.  CC )
10 zcn 9271 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  e.  CC )
11 mulass 7955 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  K  e.  CC  /\  M  e.  CC )  ->  (
( x  x.  K
)  x.  M )  =  ( x  x.  ( K  x.  M
) ) )
12 mul32 8100 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  K  e.  CC  /\  M  e.  CC )  ->  (
( x  x.  K
)  x.  M )  =  ( ( x  x.  M )  x.  K ) )
1311, 12eqtr3d 2222 . . . . . . . 8  |-  ( ( x  e.  CC  /\  K  e.  CC  /\  M  e.  CC )  ->  (
x  x.  ( K  x.  M ) )  =  ( ( x  x.  M )  x.  K ) )
148, 9, 10, 13syl3an 1290 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  K  e.  ZZ  /\  M  e.  ZZ )  ->  (
x  x.  ( K  x.  M ) )  =  ( ( x  x.  M )  x.  K ) )
15143coml 1211 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  x  e.  ZZ )  ->  (
x  x.  ( K  x.  M ) )  =  ( ( x  x.  M )  x.  K ) )
16153expa 1204 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ )  /\  x  e.  ZZ )  ->  ( x  x.  ( K  x.  M
) )  =  ( ( x  x.  M
)  x.  K ) )
17163adantl3 1156 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( x  x.  ( K  x.  M
) )  =  ( ( x  x.  M
)  x.  K ) )
1817eqeq1d 2196 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x  x.  ( K  x.  M ) )  =  N  <->  ( ( x  x.  M )  x.  K )  =  N ) )
1918biimpd 144 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x  x.  ( K  x.  M ) )  =  N  ->  ( (
x  x.  M )  x.  K )  =  N ) )
203, 4, 7, 19dvds1lem 11822 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  ||  N  ->  K 
||  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 979    = wceq 1363    e. wcel 2158   class class class wbr 4015  (class class class)co 5888   CCcc 7822    x. cmul 7829   ZZcz 9266    || cdvds 11807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-cnre 7935
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-iota 5190  df-fun 5230  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-sub 8143  df-neg 8144  df-inn 8933  df-n0 9190  df-z 9267  df-dvds 11808
This theorem is referenced by:  pw2dvdseulemle  12180
  Copyright terms: Public domain W3C validator