ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muldvds1 Unicode version

Theorem muldvds1 11825
Description: If a product divides an integer, so does one of its factors. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
muldvds1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  ||  N  ->  K 
||  N ) )

Proof of Theorem muldvds1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 zmulcl 9308 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( K  x.  M
)  e.  ZZ )
21anim1i 340 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ )  /\  N  e.  ZZ )  ->  ( ( K  x.  M )  e.  ZZ  /\  N  e.  ZZ ) )
323impa 1194 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  e.  ZZ  /\  N  e.  ZZ )
)
4 3simpb 995 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ZZ  /\  N  e.  ZZ ) )
5 zmulcl 9308 . . . 4  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ )  ->  ( x  x.  M
)  e.  ZZ )
65ancoms 268 . . 3  |-  ( ( M  e.  ZZ  /\  x  e.  ZZ )  ->  ( x  x.  M
)  e.  ZZ )
763ad2antl2 1160 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( x  x.  M )  e.  ZZ )
8 zcn 9260 . . . . . . . 8  |-  ( x  e.  ZZ  ->  x  e.  CC )
9 zcn 9260 . . . . . . . 8  |-  ( K  e.  ZZ  ->  K  e.  CC )
10 zcn 9260 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  e.  CC )
11 mulass 7944 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  K  e.  CC  /\  M  e.  CC )  ->  (
( x  x.  K
)  x.  M )  =  ( x  x.  ( K  x.  M
) ) )
12 mul32 8089 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  K  e.  CC  /\  M  e.  CC )  ->  (
( x  x.  K
)  x.  M )  =  ( ( x  x.  M )  x.  K ) )
1311, 12eqtr3d 2212 . . . . . . . 8  |-  ( ( x  e.  CC  /\  K  e.  CC  /\  M  e.  CC )  ->  (
x  x.  ( K  x.  M ) )  =  ( ( x  x.  M )  x.  K ) )
148, 9, 10, 13syl3an 1280 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  K  e.  ZZ  /\  M  e.  ZZ )  ->  (
x  x.  ( K  x.  M ) )  =  ( ( x  x.  M )  x.  K ) )
15143coml 1210 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  x  e.  ZZ )  ->  (
x  x.  ( K  x.  M ) )  =  ( ( x  x.  M )  x.  K ) )
16153expa 1203 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ )  /\  x  e.  ZZ )  ->  ( x  x.  ( K  x.  M
) )  =  ( ( x  x.  M
)  x.  K ) )
17163adantl3 1155 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( x  x.  ( K  x.  M
) )  =  ( ( x  x.  M
)  x.  K ) )
1817eqeq1d 2186 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x  x.  ( K  x.  M ) )  =  N  <->  ( ( x  x.  M )  x.  K )  =  N ) )
1918biimpd 144 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x  x.  ( K  x.  M ) )  =  N  ->  ( (
x  x.  M )  x.  K )  =  N ) )
203, 4, 7, 19dvds1lem 11811 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  ||  N  ->  K 
||  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4005  (class class class)co 5877   CCcc 7811    x. cmul 7818   ZZcz 9255    || cdvds 11796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-dvds 11797
This theorem is referenced by:  pw2dvdseulemle  12169
  Copyright terms: Public domain W3C validator