Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > muldvds2 | Unicode version |
Description: If a product divides an integer, so does one of its factors. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
muldvds2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zmulcl 9265 | . . . 4 | |
2 | 1 | anim1i 338 | . . 3 |
3 | 2 | 3impa 1189 | . 2 |
4 | 3simpc 991 | . 2 | |
5 | zmulcl 9265 | . . . 4 | |
6 | 5 | ancoms 266 | . . 3 |
7 | 6 | 3ad2antl1 1154 | . 2 |
8 | zcn 9217 | . . . . . . . 8 | |
9 | zcn 9217 | . . . . . . . 8 | |
10 | zcn 9217 | . . . . . . . 8 | |
11 | mulass 7905 | . . . . . . . 8 | |
12 | 8, 9, 10, 11 | syl3an 1275 | . . . . . . 7 |
13 | 12 | 3coml 1205 | . . . . . 6 |
14 | 13 | 3expa 1198 | . . . . 5 |
15 | 14 | 3adantl3 1150 | . . . 4 |
16 | 15 | eqeq1d 2179 | . . 3 |
17 | 16 | biimprd 157 | . 2 |
18 | 3, 4, 7, 17 | dvds1lem 11764 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 class class class wbr 3989 (class class class)co 5853 cc 7772 cmul 7779 cz 9212 cdvds 11749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-dvds 11750 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |