ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muldvds2 Unicode version

Theorem muldvds2 11999
Description: If a product divides an integer, so does one of its factors. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
muldvds2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  ||  N  ->  M 
||  N ) )

Proof of Theorem muldvds2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 zmulcl 9396 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( K  x.  M
)  e.  ZZ )
21anim1i 340 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ )  /\  N  e.  ZZ )  ->  ( ( K  x.  M )  e.  ZZ  /\  N  e.  ZZ ) )
323impa 1196 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  e.  ZZ  /\  N  e.  ZZ )
)
4 3simpc 998 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
5 zmulcl 9396 . . . 4  |-  ( ( x  e.  ZZ  /\  K  e.  ZZ )  ->  ( x  x.  K
)  e.  ZZ )
65ancoms 268 . . 3  |-  ( ( K  e.  ZZ  /\  x  e.  ZZ )  ->  ( x  x.  K
)  e.  ZZ )
763ad2antl1 1161 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( x  x.  K )  e.  ZZ )
8 zcn 9348 . . . . . . . 8  |-  ( x  e.  ZZ  ->  x  e.  CC )
9 zcn 9348 . . . . . . . 8  |-  ( K  e.  ZZ  ->  K  e.  CC )
10 zcn 9348 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  e.  CC )
11 mulass 8027 . . . . . . . 8  |-  ( ( x  e.  CC  /\  K  e.  CC  /\  M  e.  CC )  ->  (
( x  x.  K
)  x.  M )  =  ( x  x.  ( K  x.  M
) ) )
128, 9, 10, 11syl3an 1291 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  K  e.  ZZ  /\  M  e.  ZZ )  ->  (
( x  x.  K
)  x.  M )  =  ( x  x.  ( K  x.  M
) ) )
13123coml 1212 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  x  e.  ZZ )  ->  (
( x  x.  K
)  x.  M )  =  ( x  x.  ( K  x.  M
) ) )
14133expa 1205 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x  x.  K )  x.  M )  =  ( x  x.  ( K  x.  M ) ) )
15143adantl3 1157 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x  x.  K )  x.  M )  =  ( x  x.  ( K  x.  M ) ) )
1615eqeq1d 2205 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( ( x  x.  K )  x.  M )  =  N  <->  ( x  x.  ( K  x.  M
) )  =  N ) )
1716biimprd 158 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x  x.  ( K  x.  M ) )  =  N  ->  ( (
x  x.  K )  x.  M )  =  N ) )
183, 4, 7, 17dvds1lem 11984 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  ||  N  ->  M 
||  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   CCcc 7894    x. cmul 7901   ZZcz 9343    || cdvds 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-dvds 11970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator