ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdscmul Unicode version

Theorem dvdscmul 11754
Description: Multiplication by a constant maintains the divides relation. Theorem 1.1(d) in [ApostolNT] p. 14 (multiplication property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdscmul  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  N  ->  ( K  x.  M )  ||  ( K  x.  N
) ) )

Proof of Theorem dvdscmul
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 3simpc 986 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
2 zmulcl 9240 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( K  x.  M
)  e.  ZZ )
323adant3 1007 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  M )  e.  ZZ )
4 zmulcl 9240 . . . . 5  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  N
)  e.  ZZ )
543adant2 1006 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  N )  e.  ZZ )
63, 5jca 304 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  e.  ZZ  /\  ( K  x.  N
)  e.  ZZ ) )
7 simpr 109 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  x  e.  ZZ )
8 zcn 9192 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  x  e.  CC )
9 zcn 9192 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  K  e.  CC )
10 zcn 9192 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  CC )
11 mul12 8023 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  K  e.  CC  /\  M  e.  CC )  ->  (
x  x.  ( K  x.  M ) )  =  ( K  x.  ( x  x.  M
) ) )
128, 9, 10, 11syl3an 1270 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  K  e.  ZZ  /\  M  e.  ZZ )  ->  (
x  x.  ( K  x.  M ) )  =  ( K  x.  ( x  x.  M
) ) )
13123coml 1200 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  x  e.  ZZ )  ->  (
x  x.  ( K  x.  M ) )  =  ( K  x.  ( x  x.  M
) ) )
14133expa 1193 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ )  /\  x  e.  ZZ )  ->  ( x  x.  ( K  x.  M
) )  =  ( K  x.  ( x  x.  M ) ) )
15143adantl3 1145 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( x  x.  ( K  x.  M
) )  =  ( K  x.  ( x  x.  M ) ) )
16 oveq2 5849 . . . . 5  |-  ( ( x  x.  M )  =  N  ->  ( K  x.  ( x  x.  M ) )  =  ( K  x.  N
) )
1715, 16sylan9eq 2218 . . . 4  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  /\  (
x  x.  M )  =  N )  -> 
( x  x.  ( K  x.  M )
)  =  ( K  x.  N ) )
1817ex 114 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x  x.  M )  =  N  ->  ( x  x.  ( K  x.  M
) )  =  ( K  x.  N ) ) )
191, 6, 7, 18dvds1lem 11738 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  ->  ( K  x.  M )  ||  ( K  x.  N
) ) )
20193coml 1200 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  N  ->  ( K  x.  M )  ||  ( K  x.  N
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968    = wceq 1343    e. wcel 2136   class class class wbr 3981  (class class class)co 5841   CCcc 7747    x. cmul 7754   ZZcz 9187    || cdvds 11723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-setind 4513  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-cnre 7860
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-ral 2448  df-rex 2449  df-reu 2450  df-rab 2452  df-v 2727  df-sbc 2951  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-br 3982  df-opab 4043  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-iota 5152  df-fun 5189  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-sub 8067  df-neg 8068  df-inn 8854  df-n0 9111  df-z 9188  df-dvds 11724
This theorem is referenced by:  dvdscmulr  11756  mulgcd  11945  dvdsmulgcd  11954  rpmulgcd2  12023  pcprendvds2  12219  pcpremul  12221
  Copyright terms: Public domain W3C validator