ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdscmul Unicode version

Theorem dvdscmul 11843
Description: Multiplication by a constant maintains the divides relation. Theorem 1.1(d) in [ApostolNT] p. 14 (multiplication property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdscmul  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  N  ->  ( K  x.  M )  ||  ( K  x.  N
) ) )

Proof of Theorem dvdscmul
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 3simpc 998 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
2 zmulcl 9324 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( K  x.  M
)  e.  ZZ )
323adant3 1019 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  M )  e.  ZZ )
4 zmulcl 9324 . . . . 5  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  N
)  e.  ZZ )
543adant2 1018 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  N )  e.  ZZ )
63, 5jca 306 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  e.  ZZ  /\  ( K  x.  N
)  e.  ZZ ) )
7 simpr 110 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  x  e.  ZZ )
8 zcn 9276 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  x  e.  CC )
9 zcn 9276 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  K  e.  CC )
10 zcn 9276 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  CC )
11 mul12 8104 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  K  e.  CC  /\  M  e.  CC )  ->  (
x  x.  ( K  x.  M ) )  =  ( K  x.  ( x  x.  M
) ) )
128, 9, 10, 11syl3an 1291 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  K  e.  ZZ  /\  M  e.  ZZ )  ->  (
x  x.  ( K  x.  M ) )  =  ( K  x.  ( x  x.  M
) ) )
13123coml 1212 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  x  e.  ZZ )  ->  (
x  x.  ( K  x.  M ) )  =  ( K  x.  ( x  x.  M
) ) )
14133expa 1205 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ )  /\  x  e.  ZZ )  ->  ( x  x.  ( K  x.  M
) )  =  ( K  x.  ( x  x.  M ) ) )
15143adantl3 1157 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( x  x.  ( K  x.  M
) )  =  ( K  x.  ( x  x.  M ) ) )
16 oveq2 5899 . . . . 5  |-  ( ( x  x.  M )  =  N  ->  ( K  x.  ( x  x.  M ) )  =  ( K  x.  N
) )
1715, 16sylan9eq 2242 . . . 4  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  /\  (
x  x.  M )  =  N )  -> 
( x  x.  ( K  x.  M )
)  =  ( K  x.  N ) )
1817ex 115 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x  x.  M )  =  N  ->  ( x  x.  ( K  x.  M
) )  =  ( K  x.  N ) ) )
191, 6, 7, 18dvds1lem 11827 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  ->  ( K  x.  M )  ||  ( K  x.  N
) ) )
20193coml 1212 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  N  ->  ( K  x.  M )  ||  ( K  x.  N
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2160   class class class wbr 4018  (class class class)co 5891   CCcc 7827    x. cmul 7834   ZZcz 9271    || cdvds 11812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-setind 4551  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-mulrcl 7928  ax-addcom 7929  ax-mulcom 7930  ax-addass 7931  ax-mulass 7932  ax-distr 7933  ax-i2m1 7934  ax-1rid 7936  ax-0id 7937  ax-rnegex 7938  ax-cnre 7940
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-iota 5193  df-fun 5233  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-sub 8148  df-neg 8149  df-inn 8938  df-n0 9195  df-z 9272  df-dvds 11813
This theorem is referenced by:  dvdscmulr  11845  mulgcd  12035  dvdsmulgcd  12044  rpmulgcd2  12113  pcprendvds2  12309  pcpremul  12311
  Copyright terms: Public domain W3C validator