| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsmulc | Unicode version | ||
| Description: Multiplication by a constant maintains the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| dvdsmulc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpc 999 |
. . 3
| |
| 2 | zmulcl 9428 |
. . . . . 6
| |
| 3 | 2 | 3adant2 1019 |
. . . . 5
|
| 4 | zmulcl 9428 |
. . . . . 6
| |
| 5 | 4 | 3adant1 1018 |
. . . . 5
|
| 6 | 3, 5 | jca 306 |
. . . 4
|
| 7 | 6 | 3comr 1214 |
. . 3
|
| 8 | simpr 110 |
. . 3
| |
| 9 | zcn 9379 |
. . . . . . . . 9
| |
| 10 | zcn 9379 |
. . . . . . . . 9
| |
| 11 | zcn 9379 |
. . . . . . . . 9
| |
| 12 | mulass 8058 |
. . . . . . . . 9
| |
| 13 | 9, 10, 11, 12 | syl3an 1292 |
. . . . . . . 8
|
| 14 | 13 | 3com13 1211 |
. . . . . . 7
|
| 15 | 14 | 3expa 1206 |
. . . . . 6
|
| 16 | 15 | 3adantl3 1158 |
. . . . 5
|
| 17 | oveq1 5953 |
. . . . 5
| |
| 18 | 16, 17 | sylan9req 2259 |
. . . 4
|
| 19 | 18 | ex 115 |
. . 3
|
| 20 | 1, 7, 8, 19 | dvds1lem 12146 |
. 2
|
| 21 | 20 | 3coml 1213 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-sub 8247 df-neg 8248 df-inn 9039 df-n0 9298 df-z 9375 df-dvds 12132 |
| This theorem is referenced by: dvdsmulcr 12165 coprmdvds2 12448 mulgcddvds 12449 rpmulgcd2 12450 pcpremul 12649 znrrg 14455 mpodvdsmulf1o 15495 |
| Copyright terms: Public domain | W3C validator |