ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsmulc Unicode version

Theorem dvdsmulc 12330
Description: Multiplication by a constant maintains the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsmulc  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  N  ->  ( M  x.  K )  ||  ( N  x.  K
) ) )

Proof of Theorem dvdsmulc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 3simpc 1020 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
2 zmulcl 9500 . . . . . 6  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  x.  K
)  e.  ZZ )
323adant2 1040 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  x.  K )  e.  ZZ )
4 zmulcl 9500 . . . . . 6  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  x.  K
)  e.  ZZ )
543adant1 1039 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  x.  K )  e.  ZZ )
63, 5jca 306 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( M  x.  K
)  e.  ZZ  /\  ( N  x.  K
)  e.  ZZ ) )
763comr 1235 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  x.  K
)  e.  ZZ  /\  ( N  x.  K
)  e.  ZZ ) )
8 simpr 110 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  x  e.  ZZ )
9 zcn 9451 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  x  e.  CC )
10 zcn 9451 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  CC )
11 zcn 9451 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  K  e.  CC )
12 mulass 8130 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  M  e.  CC  /\  K  e.  CC )  ->  (
( x  x.  M
)  x.  K )  =  ( x  x.  ( M  x.  K
) ) )
139, 10, 11, 12syl3an 1313 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ  /\  K  e.  ZZ )  ->  (
( x  x.  M
)  x.  K )  =  ( x  x.  ( M  x.  K
) ) )
14133com13 1232 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  x  e.  ZZ )  ->  (
( x  x.  M
)  x.  K )  =  ( x  x.  ( M  x.  K
) ) )
15143expa 1227 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x  x.  M )  x.  K )  =  ( x  x.  ( M  x.  K ) ) )
16153adantl3 1179 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x  x.  M )  x.  K )  =  ( x  x.  ( M  x.  K ) ) )
17 oveq1 6008 . . . . 5  |-  ( ( x  x.  M )  =  N  ->  (
( x  x.  M
)  x.  K )  =  ( N  x.  K ) )
1816, 17sylan9req 2283 . . . 4  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  /\  (
x  x.  M )  =  N )  -> 
( x  x.  ( M  x.  K )
)  =  ( N  x.  K ) )
1918ex 115 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x  x.  M )  =  N  ->  ( x  x.  ( M  x.  K
) )  =  ( N  x.  K ) ) )
201, 7, 8, 19dvds1lem 12313 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  ->  ( M  x.  K )  ||  ( N  x.  K
) ) )
21203coml 1234 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  N  ->  ( M  x.  K )  ||  ( N  x.  K
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4083  (class class class)co 6001   CCcc 7997    x. cmul 8004   ZZcz 9446    || cdvds 12298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-dvds 12299
This theorem is referenced by:  dvdsmulcr  12332  coprmdvds2  12615  mulgcddvds  12616  rpmulgcd2  12617  pcpremul  12816  znrrg  14624  mpodvdsmulf1o  15664
  Copyright terms: Public domain W3C validator