ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3simpa Unicode version

Theorem 3simpa 984
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
Assertion
Ref Expression
3simpa  |-  ( (
ph  /\  ps  /\  ch )  ->  ( ph  /\  ps ) )

Proof of Theorem 3simpa
StepHypRef Expression
1 df-3an 970 . 2  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ( ph  /\  ps )  /\  ch )
)
21simplbi 272 1  |-  ( (
ph  /\  ps  /\  ch )  ->  ( ph  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  3simpb  985  3simpc  986  simp1  987  simp2  988  3adant3  1007  3adantl3  1145  3adantr3  1148  opprc  3779  oprcl  3782  opm  4212  funtpg  5239  ftpg  5669  ovig  5963  prltlu  7428  mullocpr  7512  lt2halves  9092  nn0n0n1ge2  9261  ixxssixx  9838  sumtp  11355  dvdsmulcr  11761  dvds2add  11765  dvds2sub  11766  dvdstr  11768  bj-peano4  13837
  Copyright terms: Public domain W3C validator