![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3simpa | Unicode version |
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
3simpa |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 982 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simplbi 274 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: 3simpb 997 3simpc 998 simp1 999 simp2 1000 3adant3 1019 3adantl3 1157 3adantr3 1160 opprc 3825 oprcl 3828 opm 4263 funtpg 5305 ftpg 5742 ovig 6040 prltlu 7547 mullocpr 7631 lt2halves 9218 nn0n0n1ge2 9387 ixxssixx 9968 sumtp 11557 dvdsmulcr 11964 dvds2add 11968 dvds2sub 11969 dvdstr 11971 dfgrp3me 13172 bj-peano4 15447 |
Copyright terms: Public domain | W3C validator |