ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3simpa Unicode version

Theorem 3simpa 996
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
Assertion
Ref Expression
3simpa  |-  ( (
ph  /\  ps  /\  ch )  ->  ( ph  /\  ps ) )

Proof of Theorem 3simpa
StepHypRef Expression
1 df-3an 982 . 2  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ( ph  /\  ps )  /\  ch )
)
21simplbi 274 1  |-  ( (
ph  /\  ps  /\  ch )  ->  ( ph  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  3simpb  997  3simpc  998  simp1  999  simp2  1000  3adant3  1019  3adantl3  1157  3adantr3  1160  opprc  3826  oprcl  3829  opm  4264  funtpg  5306  ftpg  5743  ovig  6041  prltlu  7549  mullocpr  7633  lt2halves  9221  nn0n0n1ge2  9390  ixxssixx  9971  sumtp  11560  dvdsmulcr  11967  dvds2add  11971  dvds2sub  11972  dvdstr  11974  dfgrp3me  13175  bj-peano4  15517
  Copyright terms: Public domain W3C validator