ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3simpa Unicode version

Theorem 3simpa 997
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
Assertion
Ref Expression
3simpa  |-  ( (
ph  /\  ps  /\  ch )  ->  ( ph  /\  ps ) )

Proof of Theorem 3simpa
StepHypRef Expression
1 df-3an 983 . 2  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ( ph  /\  ps )  /\  ch )
)
21simplbi 274 1  |-  ( (
ph  /\  ps  /\  ch )  ->  ( ph  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  3simpb  998  3simpc  999  simp1  1000  simp2  1001  3adant3  1020  3adantl3  1158  3adantr3  1161  opprc  3854  oprcl  3857  opm  4296  funtpg  5344  ftpg  5791  ovig  6090  prltlu  7635  mullocpr  7719  lt2halves  9308  nn0n0n1ge2  9478  ixxssixx  10059  pfxsuffeqwrdeq  11189  pfxccatpfx1  11227  pfxccatpfx2  11228  sumtp  11840  dvdsmulcr  12247  dvds2add  12251  dvds2sub  12252  dvdstr  12254  dfgrp3me  13547  bj-peano4  16090
  Copyright terms: Public domain W3C validator