![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3simpa | Unicode version |
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
3simpa |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 981 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simplbi 274 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-3an 981 |
This theorem is referenced by: 3simpb 996 3simpc 997 simp1 998 simp2 999 3adant3 1018 3adantl3 1156 3adantr3 1159 opprc 3811 oprcl 3814 opm 4246 funtpg 5279 ftpg 5713 ovig 6010 prltlu 7500 mullocpr 7584 lt2halves 9168 nn0n0n1ge2 9337 ixxssixx 9916 sumtp 11436 dvdsmulcr 11842 dvds2add 11846 dvds2sub 11847 dvdstr 11849 dfgrp3me 12997 bj-peano4 15003 |
Copyright terms: Public domain | W3C validator |