ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3simpa Unicode version

Theorem 3simpa 997
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
Assertion
Ref Expression
3simpa  |-  ( (
ph  /\  ps  /\  ch )  ->  ( ph  /\  ps ) )

Proof of Theorem 3simpa
StepHypRef Expression
1 df-3an 983 . 2  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ( ph  /\  ps )  /\  ch )
)
21simplbi 274 1  |-  ( (
ph  /\  ps  /\  ch )  ->  ( ph  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  3simpb  998  3simpc  999  simp1  1000  simp2  1001  3adant3  1020  3adantl3  1158  3adantr3  1161  opprc  3840  oprcl  3843  opm  4279  funtpg  5326  ftpg  5770  ovig  6069  prltlu  7602  mullocpr  7686  lt2halves  9275  nn0n0n1ge2  9445  ixxssixx  10026  pfxsuffeqwrdeq  11152  sumtp  11758  dvdsmulcr  12165  dvds2add  12169  dvds2sub  12170  dvdstr  12172  dfgrp3me  13465  bj-peano4  15928
  Copyright terms: Public domain W3C validator