![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3simpa | Unicode version |
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
3simpa |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 982 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simplbi 274 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: 3simpb 997 3simpc 998 simp1 999 simp2 1000 3adant3 1019 3adantl3 1157 3adantr3 1160 opprc 3826 oprcl 3829 opm 4264 funtpg 5306 ftpg 5743 ovig 6041 prltlu 7549 mullocpr 7633 lt2halves 9221 nn0n0n1ge2 9390 ixxssixx 9971 sumtp 11560 dvdsmulcr 11967 dvds2add 11971 dvds2sub 11972 dvdstr 11974 dfgrp3me 13175 bj-peano4 15517 |
Copyright terms: Public domain | W3C validator |