ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsopr Unicode version

Theorem ltsopr 7663
Description: Positive real 'less than' is a weak linear order (in the sense of df-iso 4332). Proposition 11.2.3 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Dec-2019.)
Assertion
Ref Expression
ltsopr  |-  <P  Or  P.

Proof of Theorem ltsopr
Dummy variables  r  q  s  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltpopr 7662 . 2  |-  <P  Po  P.
2 ltdfpr 7573 . . . . 5  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  <P  y  <->  E. q  e.  Q.  (
q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y
) ) ) )
323adant3 1019 . . . 4  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  (
x  <P  y  <->  E. q  e.  Q.  ( q  e.  ( 2nd `  x
)  /\  q  e.  ( 1st `  y ) ) ) )
4 prop 7542 . . . . . . . . . . . 12  |-  ( x  e.  P.  ->  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  e.  P. )
5 prnminu 7556 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  e.  P.  /\  q  e.  ( 2nd `  x ) )  ->  E. r  e.  ( 2nd `  x ) r 
<Q  q )
64, 5sylan 283 . . . . . . . . . . 11  |-  ( ( x  e.  P.  /\  q  e.  ( 2nd `  x ) )  ->  E. r  e.  ( 2nd `  x ) r 
<Q  q )
7 prop 7542 . . . . . . . . . . . 12  |-  ( y  e.  P.  ->  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  e.  P. )
8 prnmaxl 7555 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  e.  P.  /\  q  e.  ( 1st `  y ) )  ->  E. s  e.  ( 1st `  y ) q 
<Q  s )
97, 8sylan 283 . . . . . . . . . . 11  |-  ( ( y  e.  P.  /\  q  e.  ( 1st `  y ) )  ->  E. s  e.  ( 1st `  y ) q 
<Q  s )
106, 9anim12i 338 . . . . . . . . . 10  |-  ( ( ( x  e.  P.  /\  q  e.  ( 2nd `  x ) )  /\  ( y  e.  P.  /\  q  e.  ( 1st `  y ) ) )  ->  ( E. r  e.  ( 2nd `  x
) r  <Q  q  /\  E. s  e.  ( 1st `  y ) q  <Q  s )
)
1110an4s 588 . . . . . . . . 9  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) ) )  ->  ( E. r  e.  ( 2nd `  x ) r 
<Q  q  /\  E. s  e.  ( 1st `  y
) q  <Q  s
) )
12 reeanv 2667 . . . . . . . . 9  |-  ( E. r  e.  ( 2nd `  x ) E. s  e.  ( 1st `  y
) ( r  <Q 
q  /\  q  <Q  s )  <->  ( E. r  e.  ( 2nd `  x
) r  <Q  q  /\  E. s  e.  ( 1st `  y ) q  <Q  s )
)
1311, 12sylibr 134 . . . . . . . 8  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) ) )  ->  E. r  e.  ( 2nd `  x
) E. s  e.  ( 1st `  y
) ( r  <Q 
q  /\  q  <Q  s ) )
14133adantl3 1157 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) ) )  ->  E. r  e.  ( 2nd `  x
) E. s  e.  ( 1st `  y
) ( r  <Q 
q  /\  q  <Q  s ) )
15 ltsonq 7465 . . . . . . . . . . . . 13  |-  <Q  Or  Q.
16 ltrelnq 7432 . . . . . . . . . . . . 13  |-  <Q  C_  ( Q.  X.  Q. )
1715, 16sotri 5065 . . . . . . . . . . . 12  |-  ( ( r  <Q  q  /\  q  <Q  s )  -> 
r  <Q  s )
1817adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e. 
P. )  /\  (
q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y
) ) )  /\  ( r  e.  ( 2nd `  x )  /\  s  e.  ( 1st `  y ) ) )  /\  (
r  <Q  q  /\  q  <Q  s ) )  -> 
r  <Q  s )
19 prop 7542 . . . . . . . . . . . . . . . 16  |-  ( z  e.  P.  ->  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  e.  P. )
20 prloc 7558 . . . . . . . . . . . . . . . 16  |-  ( (
<. ( 1st `  z
) ,  ( 2nd `  z ) >.  e.  P.  /\  r  <Q  s )  ->  ( r  e.  ( 1st `  z )  \/  s  e.  ( 2nd `  z ) ) )
2119, 20sylan 283 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  P.  /\  r  <Q  s )  -> 
( r  e.  ( 1st `  z )  \/  s  e.  ( 2nd `  z ) ) )
22213ad2antl3 1163 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  r  <Q  s )  ->  ( r  e.  ( 1st `  z
)  \/  s  e.  ( 2nd `  z
) ) )
2322ex 115 . . . . . . . . . . . . 13  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  (
r  <Q  s  ->  (
r  e.  ( 1st `  z )  \/  s  e.  ( 2nd `  z
) ) ) )
2423adantr 276 . . . . . . . . . . . 12  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) ) )  ->  (
r  <Q  s  ->  (
r  e.  ( 1st `  z )  \/  s  e.  ( 2nd `  z
) ) ) )
2524ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e. 
P. )  /\  (
q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y
) ) )  /\  ( r  e.  ( 2nd `  x )  /\  s  e.  ( 1st `  y ) ) )  /\  (
r  <Q  q  /\  q  <Q  s ) )  -> 
( r  <Q  s  ->  ( r  e.  ( 1st `  z )  \/  s  e.  ( 2nd `  z ) ) ) )
2618, 25mpd 13 . . . . . . . . . 10  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e. 
P. )  /\  (
q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y
) ) )  /\  ( r  e.  ( 2nd `  x )  /\  s  e.  ( 1st `  y ) ) )  /\  (
r  <Q  q  /\  q  <Q  s ) )  -> 
( r  e.  ( 1st `  z )  \/  s  e.  ( 2nd `  z ) ) )
27 elprnqu 7549 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  e.  P.  /\  r  e.  ( 2nd `  x ) )  -> 
r  e.  Q. )
284, 27sylan 283 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  P.  /\  r  e.  ( 2nd `  x ) )  -> 
r  e.  Q. )
29 ax-ia3 108 . . . . . . . . . . . . . . . . . . . . 21  |-  ( r  e.  ( 2nd `  x
)  ->  ( r  e.  ( 1st `  z
)  ->  ( r  e.  ( 2nd `  x
)  /\  r  e.  ( 1st `  z ) ) ) )
3029adantl 277 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  P.  /\  r  e.  ( 2nd `  x ) )  -> 
( r  e.  ( 1st `  z )  ->  ( r  e.  ( 2nd `  x
)  /\  r  e.  ( 1st `  z ) ) ) )
31 19.8a 1604 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( r  e.  Q.  /\  ( r  e.  ( 2nd `  x )  /\  r  e.  ( 1st `  z ) ) )  ->  E. r
( r  e.  Q.  /\  ( r  e.  ( 2nd `  x )  /\  r  e.  ( 1st `  z ) ) ) )
3228, 30, 31syl6an 1445 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  P.  /\  r  e.  ( 2nd `  x ) )  -> 
( r  e.  ( 1st `  z )  ->  E. r ( r  e.  Q.  /\  (
r  e.  ( 2nd `  x )  /\  r  e.  ( 1st `  z
) ) ) ) )
33323ad2antl1 1161 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  r  e.  ( 2nd `  x ) )  ->  ( r  e.  ( 1st `  z
)  ->  E. r
( r  e.  Q.  /\  ( r  e.  ( 2nd `  x )  /\  r  e.  ( 1st `  z ) ) ) ) )
3433imp 124 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. )  /\  r  e.  ( 2nd `  x ) )  /\  r  e.  ( 1st `  z
) )  ->  E. r
( r  e.  Q.  /\  ( r  e.  ( 2nd `  x )  /\  r  e.  ( 1st `  z ) ) ) )
35 df-rex 2481 . . . . . . . . . . . . . . . . 17  |-  ( E. r  e.  Q.  (
r  e.  ( 2nd `  x )  /\  r  e.  ( 1st `  z
) )  <->  E. r
( r  e.  Q.  /\  ( r  e.  ( 2nd `  x )  /\  r  e.  ( 1st `  z ) ) ) )
3634, 35sylibr 134 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. )  /\  r  e.  ( 2nd `  x ) )  /\  r  e.  ( 1st `  z
) )  ->  E. r  e.  Q.  ( r  e.  ( 2nd `  x
)  /\  r  e.  ( 1st `  z ) ) )
37 ltdfpr 7573 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  P.  /\  z  e.  P. )  ->  ( x  <P  z  <->  E. r  e.  Q.  (
r  e.  ( 2nd `  x )  /\  r  e.  ( 1st `  z
) ) ) )
3837biimprd 158 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  P.  /\  z  e.  P. )  ->  ( E. r  e. 
Q.  ( r  e.  ( 2nd `  x
)  /\  r  e.  ( 1st `  z ) )  ->  x  <P  z ) )
39383adant2 1018 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  ( E. r  e.  Q.  ( r  e.  ( 2nd `  x )  /\  r  e.  ( 1st `  z ) )  ->  x  <P  z ) )
4039ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. )  /\  r  e.  ( 2nd `  x ) )  /\  r  e.  ( 1st `  z
) )  ->  ( E. r  e.  Q.  ( r  e.  ( 2nd `  x )  /\  r  e.  ( 1st `  z ) )  ->  x  <P  z ) )
4136, 40mpd 13 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. )  /\  r  e.  ( 2nd `  x ) )  /\  r  e.  ( 1st `  z
) )  ->  x  <P  z )
4241ex 115 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  r  e.  ( 2nd `  x ) )  ->  ( r  e.  ( 1st `  z
)  ->  x  <P  z ) )
4342adantrr 479 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  ( r  e.  ( 2nd `  x )  /\  s  e.  ( 1st `  y ) ) )  ->  (
r  e.  ( 1st `  z )  ->  x  <P  z ) )
44 elprnql 7548 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  e.  P.  /\  s  e.  ( 1st `  y ) )  -> 
s  e.  Q. )
457, 44sylan 283 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  P.  /\  s  e.  ( 1st `  y ) )  -> 
s  e.  Q. )
46 pm3.21 264 . . . . . . . . . . . . . . . . . . . . 21  |-  ( s  e.  ( 1st `  y
)  ->  ( s  e.  ( 2nd `  z
)  ->  ( s  e.  ( 2nd `  z
)  /\  s  e.  ( 1st `  y ) ) ) )
4746adantl 277 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  P.  /\  s  e.  ( 1st `  y ) )  -> 
( s  e.  ( 2nd `  z )  ->  ( s  e.  ( 2nd `  z
)  /\  s  e.  ( 1st `  y ) ) ) )
48 19.8a 1604 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( s  e.  Q.  /\  ( s  e.  ( 2nd `  z )  /\  s  e.  ( 1st `  y ) ) )  ->  E. s
( s  e.  Q.  /\  ( s  e.  ( 2nd `  z )  /\  s  e.  ( 1st `  y ) ) ) )
4945, 47, 48syl6an 1445 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  P.  /\  s  e.  ( 1st `  y ) )  -> 
( s  e.  ( 2nd `  z )  ->  E. s ( s  e.  Q.  /\  (
s  e.  ( 2nd `  z )  /\  s  e.  ( 1st `  y
) ) ) ) )
50493ad2antl2 1162 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  s  e.  ( 1st `  y ) )  ->  ( s  e.  ( 2nd `  z
)  ->  E. s
( s  e.  Q.  /\  ( s  e.  ( 2nd `  z )  /\  s  e.  ( 1st `  y ) ) ) ) )
5150imp 124 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. )  /\  s  e.  ( 1st `  y ) )  /\  s  e.  ( 2nd `  z
) )  ->  E. s
( s  e.  Q.  /\  ( s  e.  ( 2nd `  z )  /\  s  e.  ( 1st `  y ) ) ) )
52 df-rex 2481 . . . . . . . . . . . . . . . . 17  |-  ( E. s  e.  Q.  (
s  e.  ( 2nd `  z )  /\  s  e.  ( 1st `  y
) )  <->  E. s
( s  e.  Q.  /\  ( s  e.  ( 2nd `  z )  /\  s  e.  ( 1st `  y ) ) ) )
5351, 52sylibr 134 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. )  /\  s  e.  ( 1st `  y ) )  /\  s  e.  ( 2nd `  z
) )  ->  E. s  e.  Q.  ( s  e.  ( 2nd `  z
)  /\  s  e.  ( 1st `  y ) ) )
54 ltdfpr 7573 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  P.  /\  y  e.  P. )  ->  ( z  <P  y  <->  E. s  e.  Q.  (
s  e.  ( 2nd `  z )  /\  s  e.  ( 1st `  y
) ) ) )
5554biimprd 158 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  P.  /\  y  e.  P. )  ->  ( E. s  e. 
Q.  ( s  e.  ( 2nd `  z
)  /\  s  e.  ( 1st `  y ) )  ->  z  <P  y ) )
5655ancoms 268 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( E. s  e. 
Q.  ( s  e.  ( 2nd `  z
)  /\  s  e.  ( 1st `  y ) )  ->  z  <P  y ) )
57563adant1 1017 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  ( E. s  e.  Q.  ( s  e.  ( 2nd `  z )  /\  s  e.  ( 1st `  y ) )  ->  z  <P  y ) )
5857ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. )  /\  s  e.  ( 1st `  y ) )  /\  s  e.  ( 2nd `  z
) )  ->  ( E. s  e.  Q.  ( s  e.  ( 2nd `  z )  /\  s  e.  ( 1st `  y ) )  ->  z  <P  y ) )
5953, 58mpd 13 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. )  /\  s  e.  ( 1st `  y ) )  /\  s  e.  ( 2nd `  z
) )  ->  z  <P  y )
6059ex 115 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  s  e.  ( 1st `  y ) )  ->  ( s  e.  ( 2nd `  z
)  ->  z  <P  y ) )
6160adantrl 478 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  ( r  e.  ( 2nd `  x )  /\  s  e.  ( 1st `  y ) ) )  ->  (
s  e.  ( 2nd `  z )  ->  z  <P  y ) )
6243, 61orim12d 787 . . . . . . . . . . . 12  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  ( r  e.  ( 2nd `  x )  /\  s  e.  ( 1st `  y ) ) )  ->  (
( r  e.  ( 1st `  z )  \/  s  e.  ( 2nd `  z ) )  ->  ( x  <P  z  \/  z  <P 
y ) ) )
6362adantlr 477 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. )  /\  ( q  e.  ( 2nd `  x
)  /\  q  e.  ( 1st `  y ) ) )  /\  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 1st `  y
) ) )  -> 
( ( r  e.  ( 1st `  z
)  \/  s  e.  ( 2nd `  z
) )  ->  (
x  <P  z  \/  z  <P  y ) ) )
6463adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e. 
P. )  /\  (
q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y
) ) )  /\  ( r  e.  ( 2nd `  x )  /\  s  e.  ( 1st `  y ) ) )  /\  (
r  <Q  q  /\  q  <Q  s ) )  -> 
( ( r  e.  ( 1st `  z
)  \/  s  e.  ( 2nd `  z
) )  ->  (
x  <P  z  \/  z  <P  y ) ) )
6526, 64mpd 13 . . . . . . . . 9  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e. 
P. )  /\  (
q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y
) ) )  /\  ( r  e.  ( 2nd `  x )  /\  s  e.  ( 1st `  y ) ) )  /\  (
r  <Q  q  /\  q  <Q  s ) )  -> 
( x  <P  z  \/  z  <P  y ) )
6665ex 115 . . . . . . . 8  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. )  /\  ( q  e.  ( 2nd `  x
)  /\  q  e.  ( 1st `  y ) ) )  /\  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 1st `  y
) ) )  -> 
( ( r  <Q 
q  /\  q  <Q  s )  ->  ( x  <P  z  \/  z  <P 
y ) ) )
6766rexlimdvva 2622 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) ) )  ->  ( E. r  e.  ( 2nd `  x ) E. s  e.  ( 1st `  y ) ( r 
<Q  q  /\  q  <Q  s )  ->  (
x  <P  z  \/  z  <P  y ) ) )
6814, 67mpd 13 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) ) )  ->  (
x  <P  z  \/  z  <P  y ) )
6968ex 115 . . . . 5  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  (
( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) )  ->  ( x  <P  z  \/  z  <P 
y ) ) )
7069rexlimdvw 2618 . . . 4  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  ( E. q  e.  Q.  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) )  ->  ( x  <P  z  \/  z  <P 
y ) ) )
713, 70sylbid 150 . . 3  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  (
x  <P  y  ->  (
x  <P  z  \/  z  <P  y ) ) )
7271rgen3 2584 . 2  |-  A. x  e.  P.  A. y  e. 
P.  A. z  e.  P.  ( x  <P  y  -> 
( x  <P  z  \/  z  <P  y ) )
73 df-iso 4332 . 2  |-  (  <P  Or  P.  <->  (  <P  Po  P.  /\ 
A. x  e.  P.  A. y  e.  P.  A. z  e.  P.  (
x  <P  y  ->  (
x  <P  z  \/  z  <P  y ) ) ) )
741, 72, 73mpbir2an 944 1  |-  <P  Or  P.
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980   E.wex 1506    e. wcel 2167   A.wral 2475   E.wrex 2476   <.cop 3625   class class class wbr 4033    Po wpo 4329    Or wor 4330   ` cfv 5258   1stc1st 6196   2ndc2nd 6197   Q.cnq 7347    <Q cltq 7352   P.cnp 7358    <P cltp 7362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-mi 7373  df-lti 7374  df-enq 7414  df-nqqs 7415  df-ltnqqs 7420  df-inp 7533  df-iltp 7537
This theorem is referenced by:  prplnqu  7687  addextpr  7688  caucvgprprlemk  7750  caucvgprprlemnkltj  7756  caucvgprprlemnkeqj  7757  caucvgprprlemnjltk  7758  caucvgprprlemnbj  7760  caucvgprprlemml  7761  caucvgprprlemlol  7765  caucvgprprlemupu  7767  caucvgprprlemloc  7770  caucvgprprlemaddq  7775  suplocexprlemmu  7785  lttrsr  7829  ltposr  7830  ltsosr  7831  archsr  7849
  Copyright terms: Public domain W3C validator