ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsopr Unicode version

Theorem ltsopr 7691
Description: Positive real 'less than' is a weak linear order (in the sense of df-iso 4342). Proposition 11.2.3 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Dec-2019.)
Assertion
Ref Expression
ltsopr  |-  <P  Or  P.

Proof of Theorem ltsopr
Dummy variables  r  q  s  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltpopr 7690 . 2  |-  <P  Po  P.
2 ltdfpr 7601 . . . . 5  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  <P  y  <->  E. q  e.  Q.  (
q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y
) ) ) )
323adant3 1019 . . . 4  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  (
x  <P  y  <->  E. q  e.  Q.  ( q  e.  ( 2nd `  x
)  /\  q  e.  ( 1st `  y ) ) ) )
4 prop 7570 . . . . . . . . . . . 12  |-  ( x  e.  P.  ->  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  e.  P. )
5 prnminu 7584 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  e.  P.  /\  q  e.  ( 2nd `  x ) )  ->  E. r  e.  ( 2nd `  x ) r 
<Q  q )
64, 5sylan 283 . . . . . . . . . . 11  |-  ( ( x  e.  P.  /\  q  e.  ( 2nd `  x ) )  ->  E. r  e.  ( 2nd `  x ) r 
<Q  q )
7 prop 7570 . . . . . . . . . . . 12  |-  ( y  e.  P.  ->  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  e.  P. )
8 prnmaxl 7583 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  e.  P.  /\  q  e.  ( 1st `  y ) )  ->  E. s  e.  ( 1st `  y ) q 
<Q  s )
97, 8sylan 283 . . . . . . . . . . 11  |-  ( ( y  e.  P.  /\  q  e.  ( 1st `  y ) )  ->  E. s  e.  ( 1st `  y ) q 
<Q  s )
106, 9anim12i 338 . . . . . . . . . 10  |-  ( ( ( x  e.  P.  /\  q  e.  ( 2nd `  x ) )  /\  ( y  e.  P.  /\  q  e.  ( 1st `  y ) ) )  ->  ( E. r  e.  ( 2nd `  x
) r  <Q  q  /\  E. s  e.  ( 1st `  y ) q  <Q  s )
)
1110an4s 588 . . . . . . . . 9  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) ) )  ->  ( E. r  e.  ( 2nd `  x ) r 
<Q  q  /\  E. s  e.  ( 1st `  y
) q  <Q  s
) )
12 reeanv 2675 . . . . . . . . 9  |-  ( E. r  e.  ( 2nd `  x ) E. s  e.  ( 1st `  y
) ( r  <Q 
q  /\  q  <Q  s )  <->  ( E. r  e.  ( 2nd `  x
) r  <Q  q  /\  E. s  e.  ( 1st `  y ) q  <Q  s )
)
1311, 12sylibr 134 . . . . . . . 8  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) ) )  ->  E. r  e.  ( 2nd `  x
) E. s  e.  ( 1st `  y
) ( r  <Q 
q  /\  q  <Q  s ) )
14133adantl3 1157 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) ) )  ->  E. r  e.  ( 2nd `  x
) E. s  e.  ( 1st `  y
) ( r  <Q 
q  /\  q  <Q  s ) )
15 ltsonq 7493 . . . . . . . . . . . . 13  |-  <Q  Or  Q.
16 ltrelnq 7460 . . . . . . . . . . . . 13  |-  <Q  C_  ( Q.  X.  Q. )
1715, 16sotri 5075 . . . . . . . . . . . 12  |-  ( ( r  <Q  q  /\  q  <Q  s )  -> 
r  <Q  s )
1817adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e. 
P. )  /\  (
q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y
) ) )  /\  ( r  e.  ( 2nd `  x )  /\  s  e.  ( 1st `  y ) ) )  /\  (
r  <Q  q  /\  q  <Q  s ) )  -> 
r  <Q  s )
19 prop 7570 . . . . . . . . . . . . . . . 16  |-  ( z  e.  P.  ->  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  e.  P. )
20 prloc 7586 . . . . . . . . . . . . . . . 16  |-  ( (
<. ( 1st `  z
) ,  ( 2nd `  z ) >.  e.  P.  /\  r  <Q  s )  ->  ( r  e.  ( 1st `  z )  \/  s  e.  ( 2nd `  z ) ) )
2119, 20sylan 283 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  P.  /\  r  <Q  s )  -> 
( r  e.  ( 1st `  z )  \/  s  e.  ( 2nd `  z ) ) )
22213ad2antl3 1163 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  r  <Q  s )  ->  ( r  e.  ( 1st `  z
)  \/  s  e.  ( 2nd `  z
) ) )
2322ex 115 . . . . . . . . . . . . 13  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  (
r  <Q  s  ->  (
r  e.  ( 1st `  z )  \/  s  e.  ( 2nd `  z
) ) ) )
2423adantr 276 . . . . . . . . . . . 12  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) ) )  ->  (
r  <Q  s  ->  (
r  e.  ( 1st `  z )  \/  s  e.  ( 2nd `  z
) ) ) )
2524ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e. 
P. )  /\  (
q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y
) ) )  /\  ( r  e.  ( 2nd `  x )  /\  s  e.  ( 1st `  y ) ) )  /\  (
r  <Q  q  /\  q  <Q  s ) )  -> 
( r  <Q  s  ->  ( r  e.  ( 1st `  z )  \/  s  e.  ( 2nd `  z ) ) ) )
2618, 25mpd 13 . . . . . . . . . 10  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e. 
P. )  /\  (
q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y
) ) )  /\  ( r  e.  ( 2nd `  x )  /\  s  e.  ( 1st `  y ) ) )  /\  (
r  <Q  q  /\  q  <Q  s ) )  -> 
( r  e.  ( 1st `  z )  \/  s  e.  ( 2nd `  z ) ) )
27 elprnqu 7577 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  e.  P.  /\  r  e.  ( 2nd `  x ) )  -> 
r  e.  Q. )
284, 27sylan 283 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  P.  /\  r  e.  ( 2nd `  x ) )  -> 
r  e.  Q. )
29 ax-ia3 108 . . . . . . . . . . . . . . . . . . . . 21  |-  ( r  e.  ( 2nd `  x
)  ->  ( r  e.  ( 1st `  z
)  ->  ( r  e.  ( 2nd `  x
)  /\  r  e.  ( 1st `  z ) ) ) )
3029adantl 277 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  P.  /\  r  e.  ( 2nd `  x ) )  -> 
( r  e.  ( 1st `  z )  ->  ( r  e.  ( 2nd `  x
)  /\  r  e.  ( 1st `  z ) ) ) )
31 19.8a 1612 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( r  e.  Q.  /\  ( r  e.  ( 2nd `  x )  /\  r  e.  ( 1st `  z ) ) )  ->  E. r
( r  e.  Q.  /\  ( r  e.  ( 2nd `  x )  /\  r  e.  ( 1st `  z ) ) ) )
3228, 30, 31syl6an 1453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  P.  /\  r  e.  ( 2nd `  x ) )  -> 
( r  e.  ( 1st `  z )  ->  E. r ( r  e.  Q.  /\  (
r  e.  ( 2nd `  x )  /\  r  e.  ( 1st `  z
) ) ) ) )
33323ad2antl1 1161 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  r  e.  ( 2nd `  x ) )  ->  ( r  e.  ( 1st `  z
)  ->  E. r
( r  e.  Q.  /\  ( r  e.  ( 2nd `  x )  /\  r  e.  ( 1st `  z ) ) ) ) )
3433imp 124 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. )  /\  r  e.  ( 2nd `  x ) )  /\  r  e.  ( 1st `  z
) )  ->  E. r
( r  e.  Q.  /\  ( r  e.  ( 2nd `  x )  /\  r  e.  ( 1st `  z ) ) ) )
35 df-rex 2489 . . . . . . . . . . . . . . . . 17  |-  ( E. r  e.  Q.  (
r  e.  ( 2nd `  x )  /\  r  e.  ( 1st `  z
) )  <->  E. r
( r  e.  Q.  /\  ( r  e.  ( 2nd `  x )  /\  r  e.  ( 1st `  z ) ) ) )
3634, 35sylibr 134 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. )  /\  r  e.  ( 2nd `  x ) )  /\  r  e.  ( 1st `  z
) )  ->  E. r  e.  Q.  ( r  e.  ( 2nd `  x
)  /\  r  e.  ( 1st `  z ) ) )
37 ltdfpr 7601 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  P.  /\  z  e.  P. )  ->  ( x  <P  z  <->  E. r  e.  Q.  (
r  e.  ( 2nd `  x )  /\  r  e.  ( 1st `  z
) ) ) )
3837biimprd 158 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  P.  /\  z  e.  P. )  ->  ( E. r  e. 
Q.  ( r  e.  ( 2nd `  x
)  /\  r  e.  ( 1st `  z ) )  ->  x  <P  z ) )
39383adant2 1018 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  ( E. r  e.  Q.  ( r  e.  ( 2nd `  x )  /\  r  e.  ( 1st `  z ) )  ->  x  <P  z ) )
4039ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. )  /\  r  e.  ( 2nd `  x ) )  /\  r  e.  ( 1st `  z
) )  ->  ( E. r  e.  Q.  ( r  e.  ( 2nd `  x )  /\  r  e.  ( 1st `  z ) )  ->  x  <P  z ) )
4136, 40mpd 13 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. )  /\  r  e.  ( 2nd `  x ) )  /\  r  e.  ( 1st `  z
) )  ->  x  <P  z )
4241ex 115 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  r  e.  ( 2nd `  x ) )  ->  ( r  e.  ( 1st `  z
)  ->  x  <P  z ) )
4342adantrr 479 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  ( r  e.  ( 2nd `  x )  /\  s  e.  ( 1st `  y ) ) )  ->  (
r  e.  ( 1st `  z )  ->  x  <P  z ) )
44 elprnql 7576 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  e.  P.  /\  s  e.  ( 1st `  y ) )  -> 
s  e.  Q. )
457, 44sylan 283 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  P.  /\  s  e.  ( 1st `  y ) )  -> 
s  e.  Q. )
46 pm3.21 264 . . . . . . . . . . . . . . . . . . . . 21  |-  ( s  e.  ( 1st `  y
)  ->  ( s  e.  ( 2nd `  z
)  ->  ( s  e.  ( 2nd `  z
)  /\  s  e.  ( 1st `  y ) ) ) )
4746adantl 277 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  P.  /\  s  e.  ( 1st `  y ) )  -> 
( s  e.  ( 2nd `  z )  ->  ( s  e.  ( 2nd `  z
)  /\  s  e.  ( 1st `  y ) ) ) )
48 19.8a 1612 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( s  e.  Q.  /\  ( s  e.  ( 2nd `  z )  /\  s  e.  ( 1st `  y ) ) )  ->  E. s
( s  e.  Q.  /\  ( s  e.  ( 2nd `  z )  /\  s  e.  ( 1st `  y ) ) ) )
4945, 47, 48syl6an 1453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  P.  /\  s  e.  ( 1st `  y ) )  -> 
( s  e.  ( 2nd `  z )  ->  E. s ( s  e.  Q.  /\  (
s  e.  ( 2nd `  z )  /\  s  e.  ( 1st `  y
) ) ) ) )
50493ad2antl2 1162 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  s  e.  ( 1st `  y ) )  ->  ( s  e.  ( 2nd `  z
)  ->  E. s
( s  e.  Q.  /\  ( s  e.  ( 2nd `  z )  /\  s  e.  ( 1st `  y ) ) ) ) )
5150imp 124 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. )  /\  s  e.  ( 1st `  y ) )  /\  s  e.  ( 2nd `  z
) )  ->  E. s
( s  e.  Q.  /\  ( s  e.  ( 2nd `  z )  /\  s  e.  ( 1st `  y ) ) ) )
52 df-rex 2489 . . . . . . . . . . . . . . . . 17  |-  ( E. s  e.  Q.  (
s  e.  ( 2nd `  z )  /\  s  e.  ( 1st `  y
) )  <->  E. s
( s  e.  Q.  /\  ( s  e.  ( 2nd `  z )  /\  s  e.  ( 1st `  y ) ) ) )
5351, 52sylibr 134 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. )  /\  s  e.  ( 1st `  y ) )  /\  s  e.  ( 2nd `  z
) )  ->  E. s  e.  Q.  ( s  e.  ( 2nd `  z
)  /\  s  e.  ( 1st `  y ) ) )
54 ltdfpr 7601 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  P.  /\  y  e.  P. )  ->  ( z  <P  y  <->  E. s  e.  Q.  (
s  e.  ( 2nd `  z )  /\  s  e.  ( 1st `  y
) ) ) )
5554biimprd 158 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  P.  /\  y  e.  P. )  ->  ( E. s  e. 
Q.  ( s  e.  ( 2nd `  z
)  /\  s  e.  ( 1st `  y ) )  ->  z  <P  y ) )
5655ancoms 268 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( E. s  e. 
Q.  ( s  e.  ( 2nd `  z
)  /\  s  e.  ( 1st `  y ) )  ->  z  <P  y ) )
57563adant1 1017 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  ( E. s  e.  Q.  ( s  e.  ( 2nd `  z )  /\  s  e.  ( 1st `  y ) )  ->  z  <P  y ) )
5857ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. )  /\  s  e.  ( 1st `  y ) )  /\  s  e.  ( 2nd `  z
) )  ->  ( E. s  e.  Q.  ( s  e.  ( 2nd `  z )  /\  s  e.  ( 1st `  y ) )  ->  z  <P  y ) )
5953, 58mpd 13 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. )  /\  s  e.  ( 1st `  y ) )  /\  s  e.  ( 2nd `  z
) )  ->  z  <P  y )
6059ex 115 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  s  e.  ( 1st `  y ) )  ->  ( s  e.  ( 2nd `  z
)  ->  z  <P  y ) )
6160adantrl 478 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  ( r  e.  ( 2nd `  x )  /\  s  e.  ( 1st `  y ) ) )  ->  (
s  e.  ( 2nd `  z )  ->  z  <P  y ) )
6243, 61orim12d 787 . . . . . . . . . . . 12  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  ( r  e.  ( 2nd `  x )  /\  s  e.  ( 1st `  y ) ) )  ->  (
( r  e.  ( 1st `  z )  \/  s  e.  ( 2nd `  z ) )  ->  ( x  <P  z  \/  z  <P 
y ) ) )
6362adantlr 477 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. )  /\  ( q  e.  ( 2nd `  x
)  /\  q  e.  ( 1st `  y ) ) )  /\  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 1st `  y
) ) )  -> 
( ( r  e.  ( 1st `  z
)  \/  s  e.  ( 2nd `  z
) )  ->  (
x  <P  z  \/  z  <P  y ) ) )
6463adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e. 
P. )  /\  (
q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y
) ) )  /\  ( r  e.  ( 2nd `  x )  /\  s  e.  ( 1st `  y ) ) )  /\  (
r  <Q  q  /\  q  <Q  s ) )  -> 
( ( r  e.  ( 1st `  z
)  \/  s  e.  ( 2nd `  z
) )  ->  (
x  <P  z  \/  z  <P  y ) ) )
6526, 64mpd 13 . . . . . . . . 9  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e. 
P. )  /\  (
q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y
) ) )  /\  ( r  e.  ( 2nd `  x )  /\  s  e.  ( 1st `  y ) ) )  /\  (
r  <Q  q  /\  q  <Q  s ) )  -> 
( x  <P  z  \/  z  <P  y ) )
6665ex 115 . . . . . . . 8  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. )  /\  ( q  e.  ( 2nd `  x
)  /\  q  e.  ( 1st `  y ) ) )  /\  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 1st `  y
) ) )  -> 
( ( r  <Q 
q  /\  q  <Q  s )  ->  ( x  <P  z  \/  z  <P 
y ) ) )
6766rexlimdvva 2630 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) ) )  ->  ( E. r  e.  ( 2nd `  x ) E. s  e.  ( 1st `  y ) ( r 
<Q  q  /\  q  <Q  s )  ->  (
x  <P  z  \/  z  <P  y ) ) )
6814, 67mpd 13 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) ) )  ->  (
x  <P  z  \/  z  <P  y ) )
6968ex 115 . . . . 5  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  (
( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) )  ->  ( x  <P  z  \/  z  <P 
y ) ) )
7069rexlimdvw 2626 . . . 4  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  ( E. q  e.  Q.  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) )  ->  ( x  <P  z  \/  z  <P 
y ) ) )
713, 70sylbid 150 . . 3  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  (
x  <P  y  ->  (
x  <P  z  \/  z  <P  y ) ) )
7271rgen3 2592 . 2  |-  A. x  e.  P.  A. y  e. 
P.  A. z  e.  P.  ( x  <P  y  -> 
( x  <P  z  \/  z  <P  y ) )
73 df-iso 4342 . 2  |-  (  <P  Or  P.  <->  (  <P  Po  P.  /\ 
A. x  e.  P.  A. y  e.  P.  A. z  e.  P.  (
x  <P  y  ->  (
x  <P  z  \/  z  <P  y ) ) ) )
741, 72, 73mpbir2an 944 1  |-  <P  Or  P.
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980   E.wex 1514    e. wcel 2175   A.wral 2483   E.wrex 2484   <.cop 3635   class class class wbr 4043    Po wpo 4339    Or wor 4340   ` cfv 5268   1stc1st 6214   2ndc2nd 6215   Q.cnq 7375    <Q cltq 7380   P.cnp 7386    <P cltp 7390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4334  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-oadd 6496  df-omul 6497  df-er 6610  df-ec 6612  df-qs 6616  df-ni 7399  df-mi 7401  df-lti 7402  df-enq 7442  df-nqqs 7443  df-ltnqqs 7448  df-inp 7561  df-iltp 7565
This theorem is referenced by:  prplnqu  7715  addextpr  7716  caucvgprprlemk  7778  caucvgprprlemnkltj  7784  caucvgprprlemnkeqj  7785  caucvgprprlemnjltk  7786  caucvgprprlemnbj  7788  caucvgprprlemml  7789  caucvgprprlemlol  7793  caucvgprprlemupu  7795  caucvgprprlemloc  7798  caucvgprprlemaddq  7803  suplocexprlemmu  7813  lttrsr  7857  ltposr  7858  ltsosr  7859  archsr  7877
  Copyright terms: Public domain W3C validator