ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsopr Unicode version

Theorem ltsopr 7428
Description: Positive real 'less than' is a weak linear order (in the sense of df-iso 4227). Proposition 11.2.3 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Dec-2019.)
Assertion
Ref Expression
ltsopr  |-  <P  Or  P.

Proof of Theorem ltsopr
Dummy variables  r  q  s  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltpopr 7427 . 2  |-  <P  Po  P.
2 ltdfpr 7338 . . . . 5  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  <P  y  <->  E. q  e.  Q.  (
q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y
) ) ) )
323adant3 1002 . . . 4  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  (
x  <P  y  <->  E. q  e.  Q.  ( q  e.  ( 2nd `  x
)  /\  q  e.  ( 1st `  y ) ) ) )
4 prop 7307 . . . . . . . . . . . 12  |-  ( x  e.  P.  ->  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  e.  P. )
5 prnminu 7321 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  e.  P.  /\  q  e.  ( 2nd `  x ) )  ->  E. r  e.  ( 2nd `  x ) r 
<Q  q )
64, 5sylan 281 . . . . . . . . . . 11  |-  ( ( x  e.  P.  /\  q  e.  ( 2nd `  x ) )  ->  E. r  e.  ( 2nd `  x ) r 
<Q  q )
7 prop 7307 . . . . . . . . . . . 12  |-  ( y  e.  P.  ->  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  e.  P. )
8 prnmaxl 7320 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  e.  P.  /\  q  e.  ( 1st `  y ) )  ->  E. s  e.  ( 1st `  y ) q 
<Q  s )
97, 8sylan 281 . . . . . . . . . . 11  |-  ( ( y  e.  P.  /\  q  e.  ( 1st `  y ) )  ->  E. s  e.  ( 1st `  y ) q 
<Q  s )
106, 9anim12i 336 . . . . . . . . . 10  |-  ( ( ( x  e.  P.  /\  q  e.  ( 2nd `  x ) )  /\  ( y  e.  P.  /\  q  e.  ( 1st `  y ) ) )  ->  ( E. r  e.  ( 2nd `  x
) r  <Q  q  /\  E. s  e.  ( 1st `  y ) q  <Q  s )
)
1110an4s 578 . . . . . . . . 9  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) ) )  ->  ( E. r  e.  ( 2nd `  x ) r 
<Q  q  /\  E. s  e.  ( 1st `  y
) q  <Q  s
) )
12 reeanv 2603 . . . . . . . . 9  |-  ( E. r  e.  ( 2nd `  x ) E. s  e.  ( 1st `  y
) ( r  <Q 
q  /\  q  <Q  s )  <->  ( E. r  e.  ( 2nd `  x
) r  <Q  q  /\  E. s  e.  ( 1st `  y ) q  <Q  s )
)
1311, 12sylibr 133 . . . . . . . 8  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) ) )  ->  E. r  e.  ( 2nd `  x
) E. s  e.  ( 1st `  y
) ( r  <Q 
q  /\  q  <Q  s ) )
14133adantl3 1140 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) ) )  ->  E. r  e.  ( 2nd `  x
) E. s  e.  ( 1st `  y
) ( r  <Q 
q  /\  q  <Q  s ) )
15 ltsonq 7230 . . . . . . . . . . . . 13  |-  <Q  Or  Q.
16 ltrelnq 7197 . . . . . . . . . . . . 13  |-  <Q  C_  ( Q.  X.  Q. )
1715, 16sotri 4942 . . . . . . . . . . . 12  |-  ( ( r  <Q  q  /\  q  <Q  s )  -> 
r  <Q  s )
1817adantl 275 . . . . . . . . . . 11  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e. 
P. )  /\  (
q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y
) ) )  /\  ( r  e.  ( 2nd `  x )  /\  s  e.  ( 1st `  y ) ) )  /\  (
r  <Q  q  /\  q  <Q  s ) )  -> 
r  <Q  s )
19 prop 7307 . . . . . . . . . . . . . . . 16  |-  ( z  e.  P.  ->  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  e.  P. )
20 prloc 7323 . . . . . . . . . . . . . . . 16  |-  ( (
<. ( 1st `  z
) ,  ( 2nd `  z ) >.  e.  P.  /\  r  <Q  s )  ->  ( r  e.  ( 1st `  z )  \/  s  e.  ( 2nd `  z ) ) )
2119, 20sylan 281 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  P.  /\  r  <Q  s )  -> 
( r  e.  ( 1st `  z )  \/  s  e.  ( 2nd `  z ) ) )
22213ad2antl3 1146 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  r  <Q  s )  ->  ( r  e.  ( 1st `  z
)  \/  s  e.  ( 2nd `  z
) ) )
2322ex 114 . . . . . . . . . . . . 13  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  (
r  <Q  s  ->  (
r  e.  ( 1st `  z )  \/  s  e.  ( 2nd `  z
) ) ) )
2423adantr 274 . . . . . . . . . . . 12  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) ) )  ->  (
r  <Q  s  ->  (
r  e.  ( 1st `  z )  \/  s  e.  ( 2nd `  z
) ) ) )
2524ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e. 
P. )  /\  (
q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y
) ) )  /\  ( r  e.  ( 2nd `  x )  /\  s  e.  ( 1st `  y ) ) )  /\  (
r  <Q  q  /\  q  <Q  s ) )  -> 
( r  <Q  s  ->  ( r  e.  ( 1st `  z )  \/  s  e.  ( 2nd `  z ) ) ) )
2618, 25mpd 13 . . . . . . . . . 10  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e. 
P. )  /\  (
q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y
) ) )  /\  ( r  e.  ( 2nd `  x )  /\  s  e.  ( 1st `  y ) ) )  /\  (
r  <Q  q  /\  q  <Q  s ) )  -> 
( r  e.  ( 1st `  z )  \/  s  e.  ( 2nd `  z ) ) )
27 elprnqu 7314 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  e.  P.  /\  r  e.  ( 2nd `  x ) )  -> 
r  e.  Q. )
284, 27sylan 281 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  P.  /\  r  e.  ( 2nd `  x ) )  -> 
r  e.  Q. )
29 ax-ia3 107 . . . . . . . . . . . . . . . . . . . . 21  |-  ( r  e.  ( 2nd `  x
)  ->  ( r  e.  ( 1st `  z
)  ->  ( r  e.  ( 2nd `  x
)  /\  r  e.  ( 1st `  z ) ) ) )
3029adantl 275 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  P.  /\  r  e.  ( 2nd `  x ) )  -> 
( r  e.  ( 1st `  z )  ->  ( r  e.  ( 2nd `  x
)  /\  r  e.  ( 1st `  z ) ) ) )
31 19.8a 1570 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( r  e.  Q.  /\  ( r  e.  ( 2nd `  x )  /\  r  e.  ( 1st `  z ) ) )  ->  E. r
( r  e.  Q.  /\  ( r  e.  ( 2nd `  x )  /\  r  e.  ( 1st `  z ) ) ) )
3228, 30, 31syl6an 1411 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  P.  /\  r  e.  ( 2nd `  x ) )  -> 
( r  e.  ( 1st `  z )  ->  E. r ( r  e.  Q.  /\  (
r  e.  ( 2nd `  x )  /\  r  e.  ( 1st `  z
) ) ) ) )
33323ad2antl1 1144 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  r  e.  ( 2nd `  x ) )  ->  ( r  e.  ( 1st `  z
)  ->  E. r
( r  e.  Q.  /\  ( r  e.  ( 2nd `  x )  /\  r  e.  ( 1st `  z ) ) ) ) )
3433imp 123 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. )  /\  r  e.  ( 2nd `  x ) )  /\  r  e.  ( 1st `  z
) )  ->  E. r
( r  e.  Q.  /\  ( r  e.  ( 2nd `  x )  /\  r  e.  ( 1st `  z ) ) ) )
35 df-rex 2423 . . . . . . . . . . . . . . . . 17  |-  ( E. r  e.  Q.  (
r  e.  ( 2nd `  x )  /\  r  e.  ( 1st `  z
) )  <->  E. r
( r  e.  Q.  /\  ( r  e.  ( 2nd `  x )  /\  r  e.  ( 1st `  z ) ) ) )
3634, 35sylibr 133 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. )  /\  r  e.  ( 2nd `  x ) )  /\  r  e.  ( 1st `  z
) )  ->  E. r  e.  Q.  ( r  e.  ( 2nd `  x
)  /\  r  e.  ( 1st `  z ) ) )
37 ltdfpr 7338 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  P.  /\  z  e.  P. )  ->  ( x  <P  z  <->  E. r  e.  Q.  (
r  e.  ( 2nd `  x )  /\  r  e.  ( 1st `  z
) ) ) )
3837biimprd 157 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  P.  /\  z  e.  P. )  ->  ( E. r  e. 
Q.  ( r  e.  ( 2nd `  x
)  /\  r  e.  ( 1st `  z ) )  ->  x  <P  z ) )
39383adant2 1001 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  ( E. r  e.  Q.  ( r  e.  ( 2nd `  x )  /\  r  e.  ( 1st `  z ) )  ->  x  <P  z ) )
4039ad2antrr 480 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. )  /\  r  e.  ( 2nd `  x ) )  /\  r  e.  ( 1st `  z
) )  ->  ( E. r  e.  Q.  ( r  e.  ( 2nd `  x )  /\  r  e.  ( 1st `  z ) )  ->  x  <P  z ) )
4136, 40mpd 13 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. )  /\  r  e.  ( 2nd `  x ) )  /\  r  e.  ( 1st `  z
) )  ->  x  <P  z )
4241ex 114 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  r  e.  ( 2nd `  x ) )  ->  ( r  e.  ( 1st `  z
)  ->  x  <P  z ) )
4342adantrr 471 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  ( r  e.  ( 2nd `  x )  /\  s  e.  ( 1st `  y ) ) )  ->  (
r  e.  ( 1st `  z )  ->  x  <P  z ) )
44 elprnql 7313 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  e.  P.  /\  s  e.  ( 1st `  y ) )  -> 
s  e.  Q. )
457, 44sylan 281 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  P.  /\  s  e.  ( 1st `  y ) )  -> 
s  e.  Q. )
46 pm3.21 262 . . . . . . . . . . . . . . . . . . . . 21  |-  ( s  e.  ( 1st `  y
)  ->  ( s  e.  ( 2nd `  z
)  ->  ( s  e.  ( 2nd `  z
)  /\  s  e.  ( 1st `  y ) ) ) )
4746adantl 275 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  P.  /\  s  e.  ( 1st `  y ) )  -> 
( s  e.  ( 2nd `  z )  ->  ( s  e.  ( 2nd `  z
)  /\  s  e.  ( 1st `  y ) ) ) )
48 19.8a 1570 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( s  e.  Q.  /\  ( s  e.  ( 2nd `  z )  /\  s  e.  ( 1st `  y ) ) )  ->  E. s
( s  e.  Q.  /\  ( s  e.  ( 2nd `  z )  /\  s  e.  ( 1st `  y ) ) ) )
4945, 47, 48syl6an 1411 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  P.  /\  s  e.  ( 1st `  y ) )  -> 
( s  e.  ( 2nd `  z )  ->  E. s ( s  e.  Q.  /\  (
s  e.  ( 2nd `  z )  /\  s  e.  ( 1st `  y
) ) ) ) )
50493ad2antl2 1145 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  s  e.  ( 1st `  y ) )  ->  ( s  e.  ( 2nd `  z
)  ->  E. s
( s  e.  Q.  /\  ( s  e.  ( 2nd `  z )  /\  s  e.  ( 1st `  y ) ) ) ) )
5150imp 123 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. )  /\  s  e.  ( 1st `  y ) )  /\  s  e.  ( 2nd `  z
) )  ->  E. s
( s  e.  Q.  /\  ( s  e.  ( 2nd `  z )  /\  s  e.  ( 1st `  y ) ) ) )
52 df-rex 2423 . . . . . . . . . . . . . . . . 17  |-  ( E. s  e.  Q.  (
s  e.  ( 2nd `  z )  /\  s  e.  ( 1st `  y
) )  <->  E. s
( s  e.  Q.  /\  ( s  e.  ( 2nd `  z )  /\  s  e.  ( 1st `  y ) ) ) )
5351, 52sylibr 133 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. )  /\  s  e.  ( 1st `  y ) )  /\  s  e.  ( 2nd `  z
) )  ->  E. s  e.  Q.  ( s  e.  ( 2nd `  z
)  /\  s  e.  ( 1st `  y ) ) )
54 ltdfpr 7338 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  P.  /\  y  e.  P. )  ->  ( z  <P  y  <->  E. s  e.  Q.  (
s  e.  ( 2nd `  z )  /\  s  e.  ( 1st `  y
) ) ) )
5554biimprd 157 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  P.  /\  y  e.  P. )  ->  ( E. s  e. 
Q.  ( s  e.  ( 2nd `  z
)  /\  s  e.  ( 1st `  y ) )  ->  z  <P  y ) )
5655ancoms 266 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( E. s  e. 
Q.  ( s  e.  ( 2nd `  z
)  /\  s  e.  ( 1st `  y ) )  ->  z  <P  y ) )
57563adant1 1000 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  ( E. s  e.  Q.  ( s  e.  ( 2nd `  z )  /\  s  e.  ( 1st `  y ) )  ->  z  <P  y ) )
5857ad2antrr 480 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. )  /\  s  e.  ( 1st `  y ) )  /\  s  e.  ( 2nd `  z
) )  ->  ( E. s  e.  Q.  ( s  e.  ( 2nd `  z )  /\  s  e.  ( 1st `  y ) )  ->  z  <P  y ) )
5953, 58mpd 13 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. )  /\  s  e.  ( 1st `  y ) )  /\  s  e.  ( 2nd `  z
) )  ->  z  <P  y )
6059ex 114 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  s  e.  ( 1st `  y ) )  ->  ( s  e.  ( 2nd `  z
)  ->  z  <P  y ) )
6160adantrl 470 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  ( r  e.  ( 2nd `  x )  /\  s  e.  ( 1st `  y ) ) )  ->  (
s  e.  ( 2nd `  z )  ->  z  <P  y ) )
6243, 61orim12d 776 . . . . . . . . . . . 12  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  ( r  e.  ( 2nd `  x )  /\  s  e.  ( 1st `  y ) ) )  ->  (
( r  e.  ( 1st `  z )  \/  s  e.  ( 2nd `  z ) )  ->  ( x  <P  z  \/  z  <P 
y ) ) )
6362adantlr 469 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. )  /\  ( q  e.  ( 2nd `  x
)  /\  q  e.  ( 1st `  y ) ) )  /\  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 1st `  y
) ) )  -> 
( ( r  e.  ( 1st `  z
)  \/  s  e.  ( 2nd `  z
) )  ->  (
x  <P  z  \/  z  <P  y ) ) )
6463adantr 274 . . . . . . . . . 10  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e. 
P. )  /\  (
q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y
) ) )  /\  ( r  e.  ( 2nd `  x )  /\  s  e.  ( 1st `  y ) ) )  /\  (
r  <Q  q  /\  q  <Q  s ) )  -> 
( ( r  e.  ( 1st `  z
)  \/  s  e.  ( 2nd `  z
) )  ->  (
x  <P  z  \/  z  <P  y ) ) )
6526, 64mpd 13 . . . . . . . . 9  |-  ( ( ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e. 
P. )  /\  (
q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y
) ) )  /\  ( r  e.  ( 2nd `  x )  /\  s  e.  ( 1st `  y ) ) )  /\  (
r  <Q  q  /\  q  <Q  s ) )  -> 
( x  <P  z  \/  z  <P  y ) )
6665ex 114 . . . . . . . 8  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. )  /\  ( q  e.  ( 2nd `  x
)  /\  q  e.  ( 1st `  y ) ) )  /\  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 1st `  y
) ) )  -> 
( ( r  <Q 
q  /\  q  <Q  s )  ->  ( x  <P  z  \/  z  <P 
y ) ) )
6766rexlimdvva 2560 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) ) )  ->  ( E. r  e.  ( 2nd `  x ) E. s  e.  ( 1st `  y ) ( r 
<Q  q  /\  q  <Q  s )  ->  (
x  <P  z  \/  z  <P  y ) ) )
6814, 67mpd 13 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  /\  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) ) )  ->  (
x  <P  z  \/  z  <P  y ) )
6968ex 114 . . . . 5  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  (
( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) )  ->  ( x  <P  z  \/  z  <P 
y ) ) )
7069rexlimdvw 2556 . . . 4  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  ( E. q  e.  Q.  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) )  ->  ( x  <P  z  \/  z  <P 
y ) ) )
713, 70sylbid 149 . . 3  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  (
x  <P  y  ->  (
x  <P  z  \/  z  <P  y ) ) )
7271rgen3 2522 . 2  |-  A. x  e.  P.  A. y  e. 
P.  A. z  e.  P.  ( x  <P  y  -> 
( x  <P  z  \/  z  <P  y ) )
73 df-iso 4227 . 2  |-  (  <P  Or  P.  <->  (  <P  Po  P.  /\ 
A. x  e.  P.  A. y  e.  P.  A. z  e.  P.  (
x  <P  y  ->  (
x  <P  z  \/  z  <P  y ) ) ) )
741, 72, 73mpbir2an 927 1  |-  <P  Or  P.
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 963   E.wex 1469    e. wcel 1481   A.wral 2417   E.wrex 2418   <.cop 3535   class class class wbr 3937    Po wpo 4224    Or wor 4225   ` cfv 5131   1stc1st 6044   2ndc2nd 6045   Q.cnq 7112    <Q cltq 7117   P.cnp 7123    <P cltp 7127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-mi 7138  df-lti 7139  df-enq 7179  df-nqqs 7180  df-ltnqqs 7185  df-inp 7298  df-iltp 7302
This theorem is referenced by:  prplnqu  7452  addextpr  7453  caucvgprprlemk  7515  caucvgprprlemnkltj  7521  caucvgprprlemnkeqj  7522  caucvgprprlemnjltk  7523  caucvgprprlemnbj  7525  caucvgprprlemml  7526  caucvgprprlemlol  7530  caucvgprprlemupu  7532  caucvgprprlemloc  7535  caucvgprprlemaddq  7540  suplocexprlemmu  7550  lttrsr  7594  ltposr  7595  ltsosr  7596  archsr  7614
  Copyright terms: Public domain W3C validator