ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsfrnel Unicode version

Theorem xpsfrnel 12927
Description: Elementhood in the target space of the function  F appearing in xpsval 12935. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
xpsfrnel  |-  ( G  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <-> 
( G  Fn  2o  /\  ( G `  (/) )  e.  A  /\  ( G `
 1o )  e.  B ) )
Distinct variable groups:    A, k    B, k    k, G

Proof of Theorem xpsfrnel
StepHypRef Expression
1 elixp2 6756 . 2  |-  ( G  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <-> 
( G  e.  _V  /\  G  Fn  2o  /\  A. k  e.  2o  ( G `  k )  e.  if ( k  =  (/) ,  A ,  B
) ) )
2 3ancoma 987 . . 3  |-  ( ( G  e.  _V  /\  G  Fn  2o  /\  A. k  e.  2o  ( G `  k )  e.  if ( k  =  (/) ,  A ,  B
) )  <->  ( G  Fn  2o  /\  G  e. 
_V  /\  A. k  e.  2o  ( G `  k )  e.  if ( k  =  (/) ,  A ,  B ) ) )
3 2onn 6574 . . . . . . . . . 10  |-  2o  e.  om
4 nnfi 6928 . . . . . . . . . 10  |-  ( 2o  e.  om  ->  2o  e.  Fin )
53, 4ax-mp 5 . . . . . . . . 9  |-  2o  e.  Fin
6 fnfi 6995 . . . . . . . . 9  |-  ( ( G  Fn  2o  /\  2o  e.  Fin )  ->  G  e.  Fin )
75, 6mpan2 425 . . . . . . . 8  |-  ( G  Fn  2o  ->  G  e.  Fin )
87elexd 2773 . . . . . . 7  |-  ( G  Fn  2o  ->  G  e.  _V )
98biantrurd 305 . . . . . 6  |-  ( G  Fn  2o  ->  ( A. k  e.  2o  ( G `  k )  e.  if ( k  =  (/) ,  A ,  B )  <->  ( G  e.  _V  /\  A. k  e.  2o  ( G `  k )  e.  if ( k  =  (/) ,  A ,  B ) ) ) )
10 df2o3 6483 . . . . . . . 8  |-  2o  =  { (/) ,  1o }
1110raleqi 2694 . . . . . . 7  |-  ( A. k  e.  2o  ( G `  k )  e.  if ( k  =  (/) ,  A ,  B
)  <->  A. k  e.  { (/)
,  1o }  ( G `  k )  e.  if ( k  =  (/) ,  A ,  B
) )
12 0ex 4156 . . . . . . . 8  |-  (/)  e.  _V
13 1oex 6477 . . . . . . . 8  |-  1o  e.  _V
14 fveq2 5554 . . . . . . . . 9  |-  ( k  =  (/)  ->  ( G `
 k )  =  ( G `  (/) ) )
15 iftrue 3562 . . . . . . . . 9  |-  ( k  =  (/)  ->  if ( k  =  (/) ,  A ,  B )  =  A )
1614, 15eleq12d 2264 . . . . . . . 8  |-  ( k  =  (/)  ->  ( ( G `  k )  e.  if ( k  =  (/) ,  A ,  B )  <->  ( G `  (/) )  e.  A
) )
17 fveq2 5554 . . . . . . . . 9  |-  ( k  =  1o  ->  ( G `  k )  =  ( G `  1o ) )
18 1n0 6485 . . . . . . . . . . 11  |-  1o  =/=  (/)
19 neeq1 2377 . . . . . . . . . . 11  |-  ( k  =  1o  ->  (
k  =/=  (/)  <->  1o  =/=  (/) ) )
2018, 19mpbiri 168 . . . . . . . . . 10  |-  ( k  =  1o  ->  k  =/=  (/) )
21 ifnefalse 3568 . . . . . . . . . 10  |-  ( k  =/=  (/)  ->  if (
k  =  (/) ,  A ,  B )  =  B )
2220, 21syl 14 . . . . . . . . 9  |-  ( k  =  1o  ->  if ( k  =  (/) ,  A ,  B )  =  B )
2317, 22eleq12d 2264 . . . . . . . 8  |-  ( k  =  1o  ->  (
( G `  k
)  e.  if ( k  =  (/) ,  A ,  B )  <->  ( G `  1o )  e.  B
) )
2412, 13, 16, 23ralpr 3673 . . . . . . 7  |-  ( A. k  e.  { (/) ,  1o }  ( G `  k )  e.  if ( k  =  (/) ,  A ,  B )  <-> 
( ( G `  (/) )  e.  A  /\  ( G `  1o )  e.  B ) )
2511, 24bitri 184 . . . . . 6  |-  ( A. k  e.  2o  ( G `  k )  e.  if ( k  =  (/) ,  A ,  B
)  <->  ( ( G `
 (/) )  e.  A  /\  ( G `  1o )  e.  B )
)
269, 25bitr3di 195 . . . . 5  |-  ( G  Fn  2o  ->  (
( G  e.  _V  /\ 
A. k  e.  2o  ( G `  k )  e.  if ( k  =  (/) ,  A ,  B ) )  <->  ( ( G `  (/) )  e.  A  /\  ( G `
 1o )  e.  B ) ) )
2726pm5.32i 454 . . . 4  |-  ( ( G  Fn  2o  /\  ( G  e.  _V  /\ 
A. k  e.  2o  ( G `  k )  e.  if ( k  =  (/) ,  A ,  B ) ) )  <-> 
( G  Fn  2o  /\  ( ( G `  (/) )  e.  A  /\  ( G `  1o )  e.  B ) ) )
28 3anass 984 . . . 4  |-  ( ( G  Fn  2o  /\  G  e.  _V  /\  A. k  e.  2o  ( G `  k )  e.  if ( k  =  (/) ,  A ,  B
) )  <->  ( G  Fn  2o  /\  ( G  e.  _V  /\  A. k  e.  2o  ( G `  k )  e.  if ( k  =  (/) ,  A ,  B
) ) ) )
29 3anass 984 . . . 4  |-  ( ( G  Fn  2o  /\  ( G `  (/) )  e.  A  /\  ( G `
 1o )  e.  B )  <->  ( G  Fn  2o  /\  ( ( G `  (/) )  e.  A  /\  ( G `
 1o )  e.  B ) ) )
3027, 28, 293bitr4i 212 . . 3  |-  ( ( G  Fn  2o  /\  G  e.  _V  /\  A. k  e.  2o  ( G `  k )  e.  if ( k  =  (/) ,  A ,  B
) )  <->  ( G  Fn  2o  /\  ( G `
 (/) )  e.  A  /\  ( G `  1o )  e.  B )
)
312, 30bitri 184 . 2  |-  ( ( G  e.  _V  /\  G  Fn  2o  /\  A. k  e.  2o  ( G `  k )  e.  if ( k  =  (/) ,  A ,  B
) )  <->  ( G  Fn  2o  /\  ( G `
 (/) )  e.  A  /\  ( G `  1o )  e.  B )
)
321, 31bitri 184 1  |-  ( G  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <-> 
( G  Fn  2o  /\  ( G `  (/) )  e.  A  /\  ( G `
 1o )  e.  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164    =/= wne 2364   A.wral 2472   _Vcvv 2760   (/)c0 3446   ifcif 3557   {cpr 3619   omcom 4622    Fn wfn 5249   ` cfv 5254   1oc1o 6462   2oc2o 6463   X_cixp 6752   Fincfn 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1o 6469  df-2o 6470  df-er 6587  df-ixp 6753  df-en 6795  df-fin 6797
This theorem is referenced by:  xpsfrnel2  12929  xpsff1o  12932
  Copyright terms: Public domain W3C validator