| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpsfrnel | Unicode version | ||
| Description: Elementhood in the target
space of the function |
| Ref | Expression |
|---|---|
| xpsfrnel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elixp2 6849 |
. 2
| |
| 2 | 3ancoma 1009 |
. . 3
| |
| 3 | 2onn 6667 |
. . . . . . . . . 10
| |
| 4 | nnfi 7034 |
. . . . . . . . . 10
| |
| 5 | 3, 4 | ax-mp 5 |
. . . . . . . . 9
|
| 6 | fnfi 7103 |
. . . . . . . . 9
| |
| 7 | 5, 6 | mpan2 425 |
. . . . . . . 8
|
| 8 | 7 | elexd 2813 |
. . . . . . 7
|
| 9 | 8 | biantrurd 305 |
. . . . . 6
|
| 10 | df2o3 6576 |
. . . . . . . 8
| |
| 11 | 10 | raleqi 2732 |
. . . . . . 7
|
| 12 | 0ex 4211 |
. . . . . . . 8
| |
| 13 | 1oex 6570 |
. . . . . . . 8
| |
| 14 | fveq2 5627 |
. . . . . . . . 9
| |
| 15 | iftrue 3607 |
. . . . . . . . 9
| |
| 16 | 14, 15 | eleq12d 2300 |
. . . . . . . 8
|
| 17 | fveq2 5627 |
. . . . . . . . 9
| |
| 18 | 1n0 6578 |
. . . . . . . . . . 11
| |
| 19 | neeq1 2413 |
. . . . . . . . . . 11
| |
| 20 | 18, 19 | mpbiri 168 |
. . . . . . . . . 10
|
| 21 | ifnefalse 3613 |
. . . . . . . . . 10
| |
| 22 | 20, 21 | syl 14 |
. . . . . . . . 9
|
| 23 | 17, 22 | eleq12d 2300 |
. . . . . . . 8
|
| 24 | 12, 13, 16, 23 | ralpr 3721 |
. . . . . . 7
|
| 25 | 11, 24 | bitri 184 |
. . . . . 6
|
| 26 | 9, 25 | bitr3di 195 |
. . . . 5
|
| 27 | 26 | pm5.32i 454 |
. . . 4
|
| 28 | 3anass 1006 |
. . . 4
| |
| 29 | 3anass 1006 |
. . . 4
| |
| 30 | 27, 28, 29 | 3bitr4i 212 |
. . 3
|
| 31 | 2, 30 | bitri 184 |
. 2
|
| 32 | 1, 31 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-1o 6562 df-2o 6563 df-er 6680 df-ixp 6846 df-en 6888 df-fin 6890 |
| This theorem is referenced by: xpsfrnel2 13379 xpsff1o 13382 |
| Copyright terms: Public domain | W3C validator |