ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsfrnel Unicode version

Theorem xpsfrnel 12987
Description: Elementhood in the target space of the function  F appearing in xpsval 12995. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
xpsfrnel  |-  ( G  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <-> 
( G  Fn  2o  /\  ( G `  (/) )  e.  A  /\  ( G `
 1o )  e.  B ) )
Distinct variable groups:    A, k    B, k    k, G

Proof of Theorem xpsfrnel
StepHypRef Expression
1 elixp2 6761 . 2  |-  ( G  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <-> 
( G  e.  _V  /\  G  Fn  2o  /\  A. k  e.  2o  ( G `  k )  e.  if ( k  =  (/) ,  A ,  B
) ) )
2 3ancoma 987 . . 3  |-  ( ( G  e.  _V  /\  G  Fn  2o  /\  A. k  e.  2o  ( G `  k )  e.  if ( k  =  (/) ,  A ,  B
) )  <->  ( G  Fn  2o  /\  G  e. 
_V  /\  A. k  e.  2o  ( G `  k )  e.  if ( k  =  (/) ,  A ,  B ) ) )
3 2onn 6579 . . . . . . . . . 10  |-  2o  e.  om
4 nnfi 6933 . . . . . . . . . 10  |-  ( 2o  e.  om  ->  2o  e.  Fin )
53, 4ax-mp 5 . . . . . . . . 9  |-  2o  e.  Fin
6 fnfi 7002 . . . . . . . . 9  |-  ( ( G  Fn  2o  /\  2o  e.  Fin )  ->  G  e.  Fin )
75, 6mpan2 425 . . . . . . . 8  |-  ( G  Fn  2o  ->  G  e.  Fin )
87elexd 2776 . . . . . . 7  |-  ( G  Fn  2o  ->  G  e.  _V )
98biantrurd 305 . . . . . 6  |-  ( G  Fn  2o  ->  ( A. k  e.  2o  ( G `  k )  e.  if ( k  =  (/) ,  A ,  B )  <->  ( G  e.  _V  /\  A. k  e.  2o  ( G `  k )  e.  if ( k  =  (/) ,  A ,  B ) ) ) )
10 df2o3 6488 . . . . . . . 8  |-  2o  =  { (/) ,  1o }
1110raleqi 2697 . . . . . . 7  |-  ( A. k  e.  2o  ( G `  k )  e.  if ( k  =  (/) ,  A ,  B
)  <->  A. k  e.  { (/)
,  1o }  ( G `  k )  e.  if ( k  =  (/) ,  A ,  B
) )
12 0ex 4160 . . . . . . . 8  |-  (/)  e.  _V
13 1oex 6482 . . . . . . . 8  |-  1o  e.  _V
14 fveq2 5558 . . . . . . . . 9  |-  ( k  =  (/)  ->  ( G `
 k )  =  ( G `  (/) ) )
15 iftrue 3566 . . . . . . . . 9  |-  ( k  =  (/)  ->  if ( k  =  (/) ,  A ,  B )  =  A )
1614, 15eleq12d 2267 . . . . . . . 8  |-  ( k  =  (/)  ->  ( ( G `  k )  e.  if ( k  =  (/) ,  A ,  B )  <->  ( G `  (/) )  e.  A
) )
17 fveq2 5558 . . . . . . . . 9  |-  ( k  =  1o  ->  ( G `  k )  =  ( G `  1o ) )
18 1n0 6490 . . . . . . . . . . 11  |-  1o  =/=  (/)
19 neeq1 2380 . . . . . . . . . . 11  |-  ( k  =  1o  ->  (
k  =/=  (/)  <->  1o  =/=  (/) ) )
2018, 19mpbiri 168 . . . . . . . . . 10  |-  ( k  =  1o  ->  k  =/=  (/) )
21 ifnefalse 3572 . . . . . . . . . 10  |-  ( k  =/=  (/)  ->  if (
k  =  (/) ,  A ,  B )  =  B )
2220, 21syl 14 . . . . . . . . 9  |-  ( k  =  1o  ->  if ( k  =  (/) ,  A ,  B )  =  B )
2317, 22eleq12d 2267 . . . . . . . 8  |-  ( k  =  1o  ->  (
( G `  k
)  e.  if ( k  =  (/) ,  A ,  B )  <->  ( G `  1o )  e.  B
) )
2412, 13, 16, 23ralpr 3677 . . . . . . 7  |-  ( A. k  e.  { (/) ,  1o }  ( G `  k )  e.  if ( k  =  (/) ,  A ,  B )  <-> 
( ( G `  (/) )  e.  A  /\  ( G `  1o )  e.  B ) )
2511, 24bitri 184 . . . . . 6  |-  ( A. k  e.  2o  ( G `  k )  e.  if ( k  =  (/) ,  A ,  B
)  <->  ( ( G `
 (/) )  e.  A  /\  ( G `  1o )  e.  B )
)
269, 25bitr3di 195 . . . . 5  |-  ( G  Fn  2o  ->  (
( G  e.  _V  /\ 
A. k  e.  2o  ( G `  k )  e.  if ( k  =  (/) ,  A ,  B ) )  <->  ( ( G `  (/) )  e.  A  /\  ( G `
 1o )  e.  B ) ) )
2726pm5.32i 454 . . . 4  |-  ( ( G  Fn  2o  /\  ( G  e.  _V  /\ 
A. k  e.  2o  ( G `  k )  e.  if ( k  =  (/) ,  A ,  B ) ) )  <-> 
( G  Fn  2o  /\  ( ( G `  (/) )  e.  A  /\  ( G `  1o )  e.  B ) ) )
28 3anass 984 . . . 4  |-  ( ( G  Fn  2o  /\  G  e.  _V  /\  A. k  e.  2o  ( G `  k )  e.  if ( k  =  (/) ,  A ,  B
) )  <->  ( G  Fn  2o  /\  ( G  e.  _V  /\  A. k  e.  2o  ( G `  k )  e.  if ( k  =  (/) ,  A ,  B
) ) ) )
29 3anass 984 . . . 4  |-  ( ( G  Fn  2o  /\  ( G `  (/) )  e.  A  /\  ( G `
 1o )  e.  B )  <->  ( G  Fn  2o  /\  ( ( G `  (/) )  e.  A  /\  ( G `
 1o )  e.  B ) ) )
3027, 28, 293bitr4i 212 . . 3  |-  ( ( G  Fn  2o  /\  G  e.  _V  /\  A. k  e.  2o  ( G `  k )  e.  if ( k  =  (/) ,  A ,  B
) )  <->  ( G  Fn  2o  /\  ( G `
 (/) )  e.  A  /\  ( G `  1o )  e.  B )
)
312, 30bitri 184 . 2  |-  ( ( G  e.  _V  /\  G  Fn  2o  /\  A. k  e.  2o  ( G `  k )  e.  if ( k  =  (/) ,  A ,  B
) )  <->  ( G  Fn  2o  /\  ( G `
 (/) )  e.  A  /\  ( G `  1o )  e.  B )
)
321, 31bitri 184 1  |-  ( G  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <-> 
( G  Fn  2o  /\  ( G `  (/) )  e.  A  /\  ( G `
 1o )  e.  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167    =/= wne 2367   A.wral 2475   _Vcvv 2763   (/)c0 3450   ifcif 3561   {cpr 3623   omcom 4626    Fn wfn 5253   ` cfv 5258   1oc1o 6467   2oc2o 6468   X_cixp 6757   Fincfn 6799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1o 6474  df-2o 6475  df-er 6592  df-ixp 6758  df-en 6800  df-fin 6802
This theorem is referenced by:  xpsfrnel2  12989  xpsff1o  12992
  Copyright terms: Public domain W3C validator